
4 -

SECURITY CLASSIFICATION OF THIS PAGE AD-A257 660
REPOT iKin i Dii lililii lii! Di ~iiiForm Approved

REPORT DOCUME OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION

UNclASIFI]ED --

2a. SECURITY CLASSIFICATION AUTHORITY % 'T' 1ITRIBU - AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE 3 1992

4. PERFORMING ORGANIZATION REPORT NUMBER(S) M•NKTmO RGANIZTION REPORT NUMBER(S)

Kaman Sciences Corp. K-89-58U(R)

6a. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Kaman Sciences Corporation (If applicable) Air Force Studies & Analyses AgencyI (AFSAA/SAS)
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1500 Garden of the Gods Rd. Roan 1D 431 Pentagon
Colorado Springs, CO 80907 Washington DC 20330-5420

8a. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(if applicable)J ____________ F49642-89-C-0009

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)
Microcomputer Missile Performance Software System: ASSIGNMENT Computer Software Component
- AL4M - Maintenance Manual (MM-04) (U)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year,
I FROM TOJ 1 anuary1990 :\ 92-27783

16. SUPPLEMENTARY NOTATION III1 1

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP U•)Microaomputer Missile Performance Software (MPS); (U) Comput
Software Component (CSC); (U) ASSIGNMENT•: (U) AIU¶.I I II

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

(U) The Microcomputer Missile Performance Software System (MPS) consists of ten integrated
Computer Software Components (CSCs) that are used to assess ballistic missile performance,
and to plan, generate, and evaluate timed laydowns of ballistic missile forces on target
sets, subject to operational and nuclear vulnerability constraints. Within the MPS, ALM is
the CSC responsible for assigning RVs to DGZs and for scheduling missile launches so as to
minimize the span of either missile launch times or RV arrival times. The MPS is designed
to execute efficiently on AT class microcomputers, running under an MS-DOS operating system.
Over 95% of the MPS software is written in FORTRAN, with tne remainder being assembly code.
This manual provides a comprehensive specification of the AIM4 CSC and is intended to suppor
the ALM maintenance progranmer during the MPS's operational lifetime.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED [3 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c- OFFICE SYMBOL
Maior Nancy Snyder 703/695-9018 1 AFSAA/SAS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

I 0:Ml UTJW4SLE\
F R OA CARE~l

C NiRACINUMB[R 149642- 9.QQQ9

ASSIGNMENT
COMPUTER SOFTWARE COMPONENT

-ALM-

MAINTENANCE MANUAL
(MM-04)

CDRL ITEM NUMBER A006

K-89-58U (R) 16 JANUARY 1990

Kaman Sciences Corporation
1500 Garden of the Gods Rd.
Colorado Sprinq!s, CO 80907

KAMAN

ASSIGNMENT
COMPUTER SOFTWARE COMPONENT

-ALM -

MAINTENANCE MANUAL
(MM-04)

CDRLITEM NUMBER A006

K-89-58U (R) 16 JANUARY 1990

PREPARED BY: APPROVED BY
13 7 7T•MMLUýIOREN A 't tTan,

ALM Lead Engineer MPS Program Manager J t ,

JTRIBUTTC7~CT 17~~r~ O-i'rs dirc,ýt7>'

'JP: CT 1992) .*t *

A"!' l "hl ty

1ý"3

FOREWORD

This is the fourth volume in an U. S. Air Force Center for Studies and
eleven-volume set of maintenance man- Analyses (AFCSA/SASM), on Contract
uals for the Microcomputer Missile Per- Number F49642-89-C-0009. This par-
formance Software System (MPS). The ticular volume describes the ALM
MPS was developed by Kaman Sciences Computer Software Component (CSC).
Corporation, under the direction of the

!11ii

ACKNOWLEDGMENT

The authors wish to express their Lt. Col. Arthur T. Hopkins and
deep appreciation to the two U. S. Air Major David W. Knieriem, for their
Force Center for Studies and Analyses direction, support, and substantial con-
(AFCSA/SASM) Contracting Officer's tributions to the development of the
Representatives for this effort, MIPS.

v

____ ____ ___ ____ __!

ABSTRACT

The Microcomputer Missile Perfor- The MPS is designed to execute
mance Software System (MIPS) consists efficiently on AT class microcomputers,
of ten integrated Computer Software running under an MS-DOS operating

Components (CSCs) that are used to system. Over 95% of the MPS software
assess ballistic missile performance, and is written in FORTRAN, with the
to plan, generate, and evaluate timed remainder being assembly code.
laydowns of ballistic missile forces on

target sets, subject to operational and This manual provides a compre-
nuclear vulnerability constraints. hensive specification of the ALM CSC
Within the MPS, ALM is the CSC and is intended to support the ALM
responsible for assigning RVs to DGZs maintenance programmer during the

and for scheduling missile launches so as NIPS's operational lifetime.
to minimize the span of either missile
launch times or RV arrival times.

vii

TABLE OF CONTENTS

Section Page

1. INTRODUCTION .. I-I

1.1 SCOPE ... 1-1

1.2 DOCUMENT OVERVIEW 1-1

2. NIPS SUMMARY .. 2-1

2.1 MPSOVERVIEW 2-1

2.2 MPSSTRUCTURE 2-1

2.3 CSC DESCRIPTIONS 2-2

2.4 M PSCASES .. 2-5

2.5 MPS OPERATIONAL ENVIRONMENT 2-5

3. CSC OVERVIEW .. 3-1

3.1 PURPOSE .. 3-1
3.2 OPTIONS .. 3-1

3.3 CONCEPTUAL LIMITATIONS 3-2
3.4 DATA FLOW DIAGRAM 3-2

3.5 FUNCTION CHART 3-4

4. IN PUTS ... 4-1

5. PROCESSING ... 5-1

5.1 PROCESSING FLOW 5-1

5.1.1 Program ALM 5-2

5.1.2 Subroutine TRYFLY 5-5

5.1.3 Subroutine ASR2Tl 5-5

5.1.4 Subroutine PREPAR 5-5

5.1.5 Subroutine ORDMSS 5.5

ix

TABLE OF CONTENTS (Continued)

Section Page

5.1.6 Subroutine ASR2T2 5-15

5.1.7 Subrountine ADJSTI 5-22

5.1.8 Subroutine GETSRT 5-22

5.1.9 Subroutine MULSRT 5-22

5.1.10 Subroutine CHKMLT 5-22

5.1.11 Subroutine CSTOUT 5-37
5.1.12 Subroutine ADJST5 5-37

5.1.13 Subroutine CHKSRT 5-37

5.2 CONCEPTS AND MODELS 5-37

5.3 MODEL LIMITATIONS 5-43

6. O UTPUTS ... 6-1

6.1 OUTPUT FILES .. 6-1

6.2 GRAPHICAL ... 6-1

6.3 REPORTS .. 6.1

7. ERROR PROCESSING 7-1

8. SAMPLE PROBLEMS 8-1

8.1 DESCRIPTION ... 8-1
8.2 INPUTS ... 8-1
8.3 EXECUTION RESULTS 8-19

9. COMPILING AND LINKING 9-1

9.1 COM PILING ... 9-1

9.2 LINKING ... 9-1

10. REFERENCES .. 10-1

x

TABLE OF CONTENTS (Concluded)

Section Page

APPENDIX A MODULE LIST
APPENDIX B MODULE CROSS REFERENCE
APPENDIX C MODULE DESCRIPTIONS

APPENDIX D COMMON BLOCK LIST
APPENDIX E COMMON BLOCK CROSS REFERENCE

APPENDIX F COMMON BLOCK DEFINITIONS

APPENDIX G PARAMETER DEFINITIONS

APPENDIX H DATA FLOW DIAGRAM SYMBOLOGY

APPENDIX I FUNCTION CHART SYMBOLOGY

APPENDIX J FLOWCHART SYMBOLOGY

xi

LIST OF FIGURES

Figure Page

2-1 MPS DATA FLOW DIAGRAM 2-3
2-2 MPS CSC DESCRIPTIONS 2-2

3-1 ALM DATA FLOW DIAGRAM 3-3
3-2 ALM FUNCTION CHART 3-5

4-1 ORIGINS OF ALM INPUT FILES 4-1
4-2 ALM CONTROL FILE IOPT 4-3
4-3 RV ALLOCATION FILE IOPT 4-6
4-4 LAUNCH LOCATION FILE IOPT 4-8
4-5 BOOSTER DATA FILE IOPT 4-9
4-6 PBV DATA FILE IOPT 4-14
4-7 RV DATA FILE IOPT 4-17
4-8 FRATRICIDE CONSTRAINTS FILE IOPT 4-20

5-1 PROGRAM ALM PROCESS FLOW 5-3
5-2 SUBROUTINE TRYFLY PROCESS FLOW 5-6

5-3 SUBROUTINE ASR2TI PROCESS FLOW 5-7
5-4 SUBROUTINE PREPAR PROCESS FLOW 5-9
5-5 SUBROUTINE ORDMSS PROCESS FLOW 5-11
5-6 SUBROUTINE ASR2T2 PROCESS FLOW 5-16

5-7 SUBROUTINE ADJSTI PROCESS FLOW 5-23
5-8 SUBROUTINE GETSRT PROCESS FLOW 5-28
5-9 SUBROUTINE MULSRT PROCESS FLOW 5-32
5-10 SUBROUTINE CHKMLT PROCESS FLOW 5-35
5-11 SUBROUTINE CSTOUT PROCESS FLOW 5-38
5-12 SUBROUTINE ADJST5 PROCESS FLOW 5-40
5-13 TANGENT-PLANE COORDINATE SYSTEM 5-42

6-1 ALM STATUS FILE IOPT 6-2
6-2 ATTACK FILE IOPT 6-3
6-3 SORTIE FILE IOPT 6-6

xiii

LIST OF FIGURES (Continued)

Figure Page

6-4 TRAJECTORY PROJECTION MAP 6-7

6-5 SORTIE MAP ... 6-8

6-6 ATTACK DESCRIPTION BY DGZ 6-9

6-7 ATTACK DESCRIPTION BY MISSILE 6-10

6-8 ATTACK DESCRIPTION BY RV 6-11

7-1 ALM INFORMATION MESSAGES 7-4

7-2 ALM WARNING MESSAGES 7-5

7-3 ALM ERROR MESSAGES 7-14

8-1 SCENARIO SPECIFICATION 8-2

8-2 MPS MAIN MENU 8-3

8-3 MPS MISSILE DATA SET DEFINITION 8-4

8-4 MISSILE SYSTEM CONFIGURATION 8-5

8-5 BOOSTER DATA PANELS 8-6

8-6 PBV DATA PANELS 8-11

8-7 RV DATA PANELS 8-15

8-8 TIMED LAYDOWN CASE DEFINITION 8-20

8-9 LAYDOWN CASE DATA ENTRY 8-21

8-10 ASSIGNMENT AND INITIAL SCHEDULING 8-22

8-11 ASSIGNMENT RUN OPTIONS 8-23

8-12 LAUNCH COMPLEX DATA 8-24

8-13 LAUNCH LOCATION DATA 8-25

8-14 RV ALLOCATION SPECIFICATION 8-26

8-15 RV ALLOCATION BY DGZ 8-27

8-16 ALM STATUS FILE 8-28

8-17 ATTACK FILE ... 8-29

8-18 SORTIE FILE .. 8-30

8-19 ATTACK DESCRIPTION BY MISSILE 8-31

9-1 FORTRAN SOURCE FILES 9-2

9-2 MAKE DESCRIPTION FILE (ALM.MAK) 9-3

xiv

LIST OF FIGURES (Concluded)

Figure Page

9-3 MAKE DESCRIPTION FILE (X.CMP) 9-4
9-4 LINKER RESPONSE FILE (ALM.LNK) 9-4

H-i EXAMPLE DATA FLOW DIAGRAM H-I

I-1 EXAMPLE FUNCTION CHART 1-2
1-2 FUNCTION CHART SYMBOLS 1-3

J-1 FLOWCHART SYMBOLS J-2

xv

SECTION I
INTRODUCTION

1.1 SCOPE audience for this manual are those users
This manual provides a compre- who desire more than a casual fam-

hensive specification of the ALM Comn- iliarity with ALM, and more than the

puter Software Component (CSC) of the ability to simply set-up and execute it.
Microcomputer Missile Performance These users typically want a fuller
Software System (MPS). This specifica- appreciation and understanding of

tion describes and explains in detail ALM's capabilities and limitations, and
ALM's function within the MIPS, the as- its underlying concepts and models.

built design of the ALM CSC, and the

implementation of that design in soft- 1.2 DOCUMENT OVERVIEW

ware. Specifically, it presents and This manual consists of ten

discusses: sections and ten appendices organized by
"* What ALM does, and how it does it specific topics that are of interest, and

(in terms of the physical and mathe- importance, to the ALM maintenance

matical models and algorithms it programmer:

employs). * Section 1 provides an introduction to,
"* How ALM is structured and what and roadmap of, the ALM

components (modules, common Maintenance Manual.

blocks) comprise it. 0 Section 2 presents an overview of the
"* How ALM interfaces with other MPS's purpose, structure,and pro-

CSCs and what those interfaces are. gramming languages. It also

describes the operating system and
This manual is written with two hardware configuration for which the

audiences in mind. First, and foremost, MPS is designed.

this document is intended to support the 0 Section 3 provides an overview of
ALM maintenance programmer during ALM's functionality, top-level

the MIPS's operational lifetime in mak- design, and limitations.
ing revisions to ALM to correct errors, to 0 Section 4 identifies and defines the

improve efficiency, to incorporate new ALM input files and discusses how

capabilities, and to accommodate those files can be created.
changes in the host hardware and 0 Section 5 outlines ALM's processing

software environments. A secondary sequence, procedures and algorithms,

1-1

and provides a tutorial on the that it calls and the modules that call
underlying concepts and models that it.
ALM employs. * Appendix C provides a complete

"* Section 6 identifies and defines the specification of each ALM module.
outputs produced by ALM. 0 Appendix D lists all common blocks

"• Section 7 describes the error used by ALM and provides a short
processing performed by the MPS characterization of the type of data
and describes all ALM error and contained in each.
warning messages. * Appendix E supplies a common block

"• Section 8 provides a sample problem cross reference that shows the
that demonstrates ALM's operation common blocks used by each module,
and processing options. and the modules that use each

"• Section 9 describes how the ALM common block.
source code can be compiled and 0 Appendix F identifies and defines all
linked to produce executable code. variables within each ALM common

"* Section 10 lists all references alluded block.
to in this manual. * Appendix G identifies and defines all

"* Appendix A identifies and briefly parameters unique to the ALM CSC.

states the purpose of each ALM 0 Appendices H, I and J present and
module. define the symbology used in ALM

"• Appendix B provides a module cross data flow diagrams, function charts,
reference. For each module, this and flowcharts, respectively.

cross reference identifies the modules

1-2

SECTION 2
MPS SUMMARY

2.1 MPS OVERVIEW particular attention. As a result of that
The MPS is an integrated software precedence, the MPS:

system for simulating the performance * Is user-friendly and graphics
of ballistic missiles, and for assessing oriented.

the utility, effectiveness and a Provides users direct access tc the
survivability of ballistic missile forces in full range of MIPS capabilities.
conducting coordinated attacks in both 0 Maximizes user visibility and control
benign and hostile environments, of the analysis process.

Specifically, the MPS can be used to * Emphasizes fidelity and realism.
determine ballistic missile range 0 Incorporates a design that facilitates
capabilities, post-boost vehicle (PBV) future growth and expansion.
footprint dimensions and fuel usage, and
reentry vehicle (RV) flight times. It can 2.2 MPS STRUCTURE
also be used to report trajectory state The MIPS is an integrated system
vectors, to calculate optimized weapon consisting of ten distinct, but
allocations, to predict RV fratricide in a complementary Computer Software
timed laydown, and to estimate missile Components (CSCs). Two of these (MMI
flyout attrition in a launch schedule, and EXEC) are support CSCs that are
given a pindown attack scenario. In invoked every time a user employs the
addition, the MPS can be used to plan, MPS. The remaining eight mission
generate and evaluate optimized CSCs (ALM, CAIN, DAMAGE,
laydowns of ballistic missile forces on GRAPHS, PATRIT, PFRAT, SOADA

target sets subject to operational and and TARGET) are independently
nuclear vulnerability constraints, operable, and are capable of being
Finally, the MPS is equipped with a exercised with user-provided inputs,
graphics processor that enables users to output files generated by a prior
produce maps and graphs of missile execution of another CSC, or user-
performance, effectiveness and laydown modified versions of such output files.
results.

All communications between CSCs
During MPS development, a are effected via a set of control, status

number of design features were accorded and data files. Figure 2-1 identifies all

2-1

MIPS files and it shows the connectivity results are provided by various output

of CSCs through these files. Each devices connected directly to the

mission CSC interfaces directly to the GRAPHS CSC.

EXEC/MMi through control and status

files. The MIPS user communicates with 2.3 CSC DESCRIPTIONS

the system via a keyboard and a VDT Each MIPS CSC has a well-defined,

that are tied directly to the MMI. Those and easily-differentiated purpose. A

files connected to EXEC/MMI with brief description of each CSC's purpose,

heavy, double-arrowhead lines can be in terms of the functions it performs, is

created/modified by the user through the presented in Figure 2-2.

MMI. Graphical depictions of MPS

CSC DESCRIPTION

ALM Generates timed laydowns of ballistic missile forces that
optimize attack timing objectives subject to operational
constraints.

CAIN Quantifies nuclear constraints on attack structure due to RV
fratricide, and missile flyout attrition resulting from nuclear
pindown detonations.

DAMAGE Calculates the expected installation value damaged in an
attack, accounting for weapon system reliabilities, RV fratricide
and missile attrition.

EXEC Coordinates the activities of all CSCs and superintends CSC
execution.

GRAPHS Produces graphical depictions of MPS outputs.

MMI Provides a user-friendly, interactive panel system that allows
the user to define a case, and supply all required input data.

PATRIT Evaluates the probability of missile fiyout attrition in a launch
schedule, given a pindown scenario.

PFRAT Evaluates the probability of RV fratricide in a timed laydown
and optionally adjusts launch times to reduce fratricide.

SOADA Generates DGZs and allocates RVs to those DGZs so as to
optimize user-specified damage objectives.

TARGET Estimates missile performance capabilities, evaluates missile
sortie feasibility, assesses a missile's depressed trajectory
capability, and generates trajectory state vectors.

FIGURE 2-2 MPS CSC DESCRIPTIONS

2-2

0~~o J --

J-LL

2.4 MPS CASES exclusion regions for RVs (fratricide)

Fundamental to the informed or missiles (flyout attrition).

employment of the MPS is an 0 Laydown Case - a laydown case pro-

understanding and appreciation of the vides the user with the option of run-

concept of a case. The importance of this ning subsets of the ALM, DAMAGE,

concept is reflected in the MPS main PATRIT, PFRAT and SOADA CSCs

menu which, with only one notable in an end-to-end mode to plan, gener-

exception (build data sets), provides the ate, and evaluate timed laydowns of

user with a set of operations (define, ballistic missile forces on target sets,

load, execute, graph, and review) for subject to operational and nuclear

manipulating cases. vulnerability constraints.

Within the MPS, a case refers 2.5 MPSOPERATIONAL

collectively to: (1) a selected set of MPS ENVIRONMENT

functions; (2) the ordered sequence of The MPS is designed to execute

CSC executions needed to perform those efficiently on AT class microcomputers,

functiuns; (3) all files input to that running under an MS-DOS operating

execution sequence; and (4) all output system. The baseline hardware config-

files produced. uration for which the MPS is tailored

consists of the following elements:

The MPS supports three types of 0 80286 or 80386 central processing

cases: unit equipped with an 80287 or

* Accessibility - an accessibility case 80387 numeric coprocessor.

involves theautonomousexecutionof 0 EGA video display adapter and

the TARGET CSC to generate mis- monitor.

sile performance estimates, to assess * 640 kilobytes of random access

missile sortie feasibility, to assess a memory (RAM).

missile's depressed trajectory capa- 0 1 megabyte of additional RAM for

bility or to report trajectory state use as a graphics data buffer.

vectors. * Hewlett Packard Laserjet Series II

* Nuclear Constraints - a nuclear printer or Hewlett Packard PaintJet

constraints case involves the auton- printer.

omous execution of the CAIN CSC to 0 20 megabytes of hard disk storage.

generate deterministic or proba- 0 One 1.2 megabyte 51" floppy disk

bilistic nuclear environment drive.

2-5

Although the MIPS is targeted for However, there are a few general
operation on this baseline hardware, the exceptions employed by the MPS to
MIPS is capable of being installed and increase software efficiency and to
executed on a wider class of machines. improve software maintainability.

These exceptions are:
To compile, link and execute the o The use of the INCLUDE statement

MIPS, the following software is required: to include common 6locks in
"* MS-DOS Operating System 3.2 or subroutines.

above. The system must include the 0 The use of'*' data typing, specifically
VDISK.SYS and ANSI.SYS install- INTEGER*2 and LOGICAL*1 data
able device drivers, types to reduce the size of executable

"* Microsoft FORTRAN Optimizing code.
Compiler, Version 4.1 or above. 0 The use of the Microsoft backslash

"* Microsoft Macro Assembler, Version and $ edit descriptors to improve
5.1. display quality.

* The use of Hollerith constants in data
As one might infer from the preced- statements.

ing list, the MPS is a combination of 0 The use of type conversion for
FORTRAN and assembly code, with over character constants specified in data
95% of the software being FORTRAN. statements.
Use of assembly code is confined to the
EXEC, MMI and GRAPHS CSCs. The Specific occurrences of these
majority of the MPS FORTRAN code exceptions are described in Appendix C
conforms to the FORTRAN 77 (ANSI for each module.
X3.9 - 1978) programming language

standard.

2-6

SECTION 3

CSC OVERVIEW

3.1 PURPOSE 0 Enforces minimum time

Within the MPS, the ALM (Attack separations between RVs targeted

Laydown Model) CSC is responsible for to the same DGZ, when those RVs

assigning RVs (Reentry Vehicles) to are deployed from different

DGZs (Desired Ground Zeros) and for missiles. These times are either

scheduling missile launch times. specified by the user or read from

Specifically, the ALM first forms missile the input Fratricide Constraints

sorties that: Files.
0 Collectively fulfill, or fulfill as 0 Satisfies missile system launch

closely as possible, an input RV rate constraints.

allocation specifying the number of

RVs to be targeted to each DGZ. The ALM CSC can be executed

* Are individually feasible in the without previously executing any other

sense that the sortie is within the CSCs, but this requires the user to

missile's performance capabilities, allocate RVs to DGZs, to renerate the

* Individually satisfy user-specified RV Allocation file normally written by

targeting requirements and the Allocation CSC (SOADA), and to

constraints, including: the reentry specify minimum in-line RV arrival

angle trajectory to be employed; time separations. In most applications,

the maximum amount of PBV however, the Allocation and CAIN CSCs

(Post-Boost Vehicle) fuel to be used are run prior to executing ALM. CAIN

for range extension; and the is run in mode 2, to generate the

minimum exoatmospheric distance Fratricide Constraints Files that can be

between RVs. input to ALM.

Using the feasible missile sorties 3.2 OPTIONS

identified, the ALM next constructs a Operation of the ALM CSC is

missile launch schedule that: controlled by user specification of the

* Optimizes a user-supplied attack following six options:

timing goal (either minimize RV 0 In-line RV time separations. These

downtime span, or minimize times can be provided by the user or

missile launch duration). the user can direct the ALM to read

3-1

these times for user-specified 0 Maximum fraction of PBV fuel to be

Fratricide Constraints Files. If the used for PBV range extension.

user elects the input option, then the 0 Reentry angle to be employed for

user inputs the desired minimum in- each missile participating in an

line RV spacing (AT) as a function of attack. If zero is entered, minimum-

RV number. For example. the user energy trajectories are to be used.

might specify a AT of 2 seconds 0 Rotating or non-rotating earth.

between the first and second RVs 0 Attack timing goal. Either minimize

targeted to a DGZ, and a IT of 2 RV downtime span, or minimize

minutes between the second and missile launch duration.

third RVs. This single set of ATs is 0 Space or don't space RVs a minimum

then employed for all DGZs, distance apartexoatmospherically.

regardless of the height of burst

(HOB) associated with a DGZ. 3.3 CONCEPTUAL LIMITATIONS

Alternatively, the user can supply The conceptual limitations of the

the name of a CAIN-produced ALM CSC are as follows:

Fratricide Constraints File for each 0 All missiles employed in the attack

HOB employed in an attack, and are identical.

direct the ALM to read the minimum, 0 The number of RVs in an attack must

fratricide-free, in-line RV time be evenly divisible by the number of

spacings (ATF's) contained in those RVs on a missile; i.e., an integer

files. Based on the HOB employed at number of missiles must be employed

a DGZ, the ALM will then: in an attack.

(1) identify the applicable ATF for * A single HOB must be used for all

that DGZ; and (2) enforce that ATF RVs targeted to a given DGZ.

uniformly between every consecutive

pair of RVs targeted to that DGZ. 3.4 DATA FLOW DIAGRAM

ATF is defined as the minimum, The data flow diagram (DFD) pre-

intra-DGZ RV a-rival time sented in Figure 3-1 identifies the files

separation that ensures avoidance of that are input to and output from the
RV fratricide due to the prompt ALM CSC. Furthermore, this figure

nuclear environments (thermal and indicates which CSCs can generate data

nuclear radiation environments and for, or use data generated by, the ALM

blast wave environments) that are CSC. A brief discussion of DFDs is

produced by an RV HOB detonation, provided in Appendix H.

3-2

'T - t ' T - T 'IT

0I I cd I Id< I tdO (I

LLLU

0

A L4

-j

... LU.

0 -o 0 14Z0
Lu

: < n' Lu

LL-Jx4

00 0

0t LU enL <r

z .
0LUI LU $,A

-i -i Lu I-

Z 0 U-

-J:=
at I

0 zo Lc:

LL. %A

Ii<~ (

0d > I> CcU
Irco CL<

3-3

Inspection of Figure 3-1 reveals 0 Status File (4.1). This file informs

that the ALM accepts as input the the EXEC/MMLMI and the user of the

following seven files: success or failure of the ALM

"* Control File (1.14). Prepared by the execution. Information, warning and

EXEC/MNMI, this file contains values error messages describe the cause of

that control the performance of the any failure.

ALM CSC. * Attack File (4.2). This file contains

"* RV Allocation File (3.3). This file missile launch time and RV

specifies the number of DGZs, their downtime statistics, as well as

locations, and the number of RVs individual missile and RV data.

allocated to each DGZ. This file is ALM initializes the probability of

normally written by the SOADA attrition, and the probabilities of

CSC. fratricide for each RV. The Attack

"* Launch Location File (0.20). This file File can be passed to the DAMAGE,

contains the latitude and longitude of PATRIT, and PFRAT CSCs.

each attacking missile. The file is 0 Sortie File (4.3). This file describes

generated by the user via the MMI. the sorties performed by each missile;

"* Booster Data File (0.33). Supplies i.e., it provides the ordered list of

booster model parameters for the DGZs targeted by each missile.

missile system employed in the

attack. 3.5 FUNCTION CHART

"* PBV Data File (0.34). Supplies PBV Figure 3-2 illustrates the

model parameters for the attacking functional structure of the ALM CSC.

missile system, if that system has a This figure presents the four-step

PBV. process that ALM employs to assign RVs

"* RV Data File (0.35). Supplies RV to DGZs and schedule missile launches.

model parameters for the attacking These steps are:

missile system. 0 Read input files. ALM reads the

"* Fratricide Constraints Files (8.3). Control, RV Allocation, Launch

These files are generated by the Location, Booster Data, PBV Data,

CAIN CSC and contain the RV Data, and (optionally)

fratricide-free, in-line RV time Fratricide Constraints files.

separations used by the ALM. 0 Form valid sorties. For each
missile, ALM identifies an ordered

The following files are generated by sequence of DGZs that can be

the ALM CSC: targeted. Collectively, these

3-4

I-

LAJ

20

Z Luj

z -J

z < 0
zoj

Z
Lu N

<I~

LLSL

00

~< 6
Lu>

3-

sorties are designed to optimally satisfy weapon system and

fulfill the input RV allocation, targeting constraints.

Adjust launch times. For each 0 Write output files. ALM writes the

missile, ALM identifies a launch Attack and Sortie Files.

time. The resultant launch

schedule is designed to optimize See Appendix I for a brief tutorial

the attack timing objective, and on function charts, if needed.

3-6

SECTION 4
INPUTS

All of the input data required to files. These files must be created by the

execute ALM are provided via a set of user prior to executing the ALM CSC.
data files. 1'hese files are either: output More specifically, the user must have
files generated by a prior execution of created a record in each of these files
another CSC, user-modified versions of c.,rresponding to the missile system to be
such output files, output files produced used in the ALM execution. These
via the MPS "BUILD DATA SETS" files/records are created by the user via
option, or user-generated (via the MMI) the MMI when the "BUILD DATA
input files. Figure 4-1 identifies the SETS" option is selected in the MPS

seven files input to ALM and indicates main menu.

the source of those files.

The last file, the Fratricide

The first three files listed in Constraints File, is always written by
Figure 4-1 can all be created by the user the CAIN CSC; it is needed only if the
through the MMI, but the RV Allocation user doesn't want to specify the time
File will normally be written by between layers.

SOADA, the RV Allocation CSC.

In order to amend the set of input

The next three files (Booster, PBV i'ata to the ALM CSC, the maintenance

and RV Data) are Missile Data Base programmer must change one or more of

FILE FILE NO. CREATED BY

Control File 1.14 User via MMI

RV Allocation File 3.3 SOADA CSC (or user via MMI)

Launch Location File 0.20 User via MMI

Booster Data File 0.33 Missile Data Base

PBV Data File 0.34 Missile Data Base

RV Data File 0.35 Missile Data Base

Fratricide Constraints File 8.3 CAIN CSC (optional)

FIGURE 4-1 ORIGINS OF ALM INPUT FILES

4-1

these input files. To assist him in this Output Parameter Tables (IOPTs), show

endeavor, Figures 4-2 through 4-8 are the detailed format and content of the
provided. These figures, called Input- seven ALM input files.

4-2

-Li

a= z
LLLu

LU(.

aL. z

LAU
<a 0-

z cc
00 E

0 0

0l 00 0 0D EN to %c %D

2 oo < < < < < <
wo , <) ý >Z).)-e Xj

W 0

U 0

_L GJ2 LM 40 0 0
0i 6 C; %A E E E

c E -o 1
ap 0 m :5 -'04

A en 0* 0 0i mSo
CL* 0 41 .L' (D

0 cr.~~ GD G
U-. < %A A %A .*A

0 - ap 00 0* 0 GD 2 0 0 0

%A EA E NA C E NA '0 EU "0 E~ E> E E EU EU E
uI LI % mY Z ý co za co C Zo CLc Z c Z~ 0 Z Z Z

LU.

<u LU

LLJ LLJ 0

LAIZ
LU

c4-

z
Lu~

rx-l

LUU

CL

0~0

I-o

LU 0

I--

00

~LLL

b--IIL1- > 0 0M 4.A

CL

%J4- .. &'A a w

0A Aa>

0~~~. E~'~2 w.
w v . 0M Q0 :n gDa E-6 0

c~ %A cc- >.c I-.
o~-S P 0= 0c~ E m)a ~c ~ 6 ~

E~e Eu EE~~- t
EC EU U

LU w~ %A~ 00 c c
IV-

MLU.

~~ 00

Oi Ix464

Lu LU w u J v J w J W J wJ v~ 1Gi (D 4) 40 w, a al a, 41

4A A %A %A A "A %A %A %A

LU _

L0 .A LA #, 4 A IA %A 4A %A

LUI

-l 0 0 q; q; q;i 0; oC o a; a;
M~ ~ LA z M M~ M 0 M M

00J 00- 0 0 0

I=LL.

0 0
LL..

w w w w w 0 %

b.. b-. b-. h- &. 6.. &. b- U..

o C C C C C C C c c

EUU m 0m-
a,(L a, a,) a, a, a, a, a,

41 (L ~a a) a, a, a, a, a, aW

o - ui 4 0 .0 40 .0 0 4-0 40 4.0 .0 f

c co a, a, a, a a , , a a,

p P

z z LI; 20 mN rn UA %.o I% co

00
u ~z

4-5

z

jUJ

0i 0

oi 0 m -

LUL

a.
-

CcU-

0<<0

0 0000

4.U 0

40A %A 0 G
LAJ >4) '

m 0 0

E E 7i
0 EU >

4-. Z -a:0 4

E U * ~ 0 0 a. .oi ca~

0 0 4 '
LU

I--

cm N

z
LA Lu - -

jUJ

LuJ

ENS .(A eq n

LU 00 07

LU-

~LL. -J 0

oz~), 0 N '

LAJL0

ccJ1

200
J= LA- 0

0 0

LL. M%0 W

43,w
0 E

Eu~~% C LU% UG

CL a, o. Go. 1
0 0 =o. X M #A - ýA

.2~~1 .S0~
kA .2 1

0 ~ l' 0 0L E~.W

f- wn E ;

<~~~ en- E 4-A LA - ' .o
_0 z .E ,- 0 A -

0 -

W- U.4 0 '4 :t-C
.24- E

00

c4-7

cm On cm cm
_j~~~~ 2JE4; a

z z

rcn -

LU 1cFaFa
0L 0 0i 0

0 oi 0c0 0

LU %A0 co 0D 0 c 0D
.a 0 0 - - en-i- e -

wU z LL + + + NJ

ca0 0 0
0% G 0 0% 00 0

CcLA. - 0

LA--

W 00Go000 0600 00 z
8LA. LL L. L ~LL ~ LA

0
LU c

0 LL .2 Q

cc 0 z
Eu 0 ='~

0 uJ0

U- i E ~ E'-A

0EE 0 20uja
0 LAJ (D A J %J

-M 0j b- I> z, Eu LU-U

j -J 0- m _ 0
z % 0 ..j -J V b- '. = .

4A EN ____ 4J J 0
M CA_ 0 ~ AJ 4.

UJJ

z z 0(ne4.nL

IL 'i <- E e - N

LL..

00

vJz
L"

4-8

Ln

CL

LAJ
JLUa a , a a a

zz

LUJ
LAJ

LA.'L

000

CLLa.

-j 0

LL I E -a

00
20

LA. M J C L

0 0QD0
__. aCa, O *

o h~~~~.. . . . 0

cc0 0%I 4A. ~.0 0 0

4A o

do'E~~ w 22 a
&. 4# %A ~ E

U.' C am
4-0 -- 06

0 C
%@ h -- t. 6- O-

00o,- 0
Go c . >,.0 0 LU.

V Ci v o E E E4E9

4.A

puLLA
-

LI,

acx:

0A 0 0 0 D 0
CLo + + + + 0i 0i 0 0 + +

Z LuI LuI Lu Lu 0 0 0 0 W L
0 0 0 0 0 Ln ENAE

00

LL. 0;0 -
LU - -

LL.L

4' 4

z a, a, a, a,0 $A %A %A #A

CL ~ ~ a, a, a0

E E E E

m, m- E m m Wj 0 j Qp W Z &
Lu .a a, a, a, i.. -4' 4

wU rn =. C. 0 C = .C: 3

0 om m m m

Vi w ~ 0~O

D LU.r "L

-I -J < z

L-LAU.
CL

0
cc.

O00
'-ZE

4-10

jLJ

0~ 0-

a. ~+
0 0 0 0 0 0i 0i 0 0 0 0, 0 0

0i L 0 0 0 0 0 0 0 0 0

NNI- .dd coddO

200

0 0
U. EUEU E

I- N4

I.-

co N e4~EE E 4
%A j= .0 wA w

M1 M. 4. 0 .0 .0 do to...
E EUE

0 M cE 4D GD 40 GD EU EU EU r_ C

... 0 .' .' .'U E
o 0 ~E EU EU U E EUEU EU EU EU

EU 0
40m mm-

Ix-

Qtin

CL

4-11

%J %J vD %j uJ %j @ -
CL~ %A % % A #A E

0 %A A U0 %A fA %A 6

LUU

-LJ 0 of 0 0 d C; C;9~ oo o o
Luj - - -- - -' - - --

-L 00

<c

20 E-

< 1

E-r

LA' z 'U-
co0 en v W C

'U E r, M

Lm 0 .k E

0 W %

L U C U C C A 4- 0 >

In' 0
L4U c c- -C

I-m

0U ci Go e m me E -
E1 -% IL J c

ui at

24-1

LAA

an

'6A

U,

LLLU

LAJ~

LLU

U-
LU 0

00

LL-

4A

0 C o

00. 0.

m -0 - .- -0 . .-

0 a, a a, a, a, a, a, a, a, ac

0 C C C = C C C C C _

0 m o

LU0

uic LU.

Z L 0 r ~~LA %a r- w 00% 0 m- vN LA I

LU LUz - LA LA LA LA LA LA LA to0 %C to %a0 %0 kc

Ua-

Odm

4-13

LAJ

DUU

zyu
L, 6.

00 gL g N;

F-
LUJ

~LL

cc E-

_0 .0

a. Z~ ~ ~ ~ 0a

LA~ $A -EU L0

a. c.~~~ E-~<.. ~ C~ a

U mu.. -~~ 41a.~~~~~~~ ci... .- W . *

0 1. %A 0 r_ ~
%A w w '- .) a, 0% .-

o c
Go CL EO Eu 4 E

>U LUM Uý Li
L" 0 0 M a

Ia- U- 0-

M %s- CL4--4

rn

I- J z J4

LA .

LU kA kA I

LLAJ

LAJ

~~n0

0L + + +6000
z 0 LLU LL Ln

LLA 0 0D tr

0 00 oNOd

<czi

200

00
2-

GD0 4- c
b.. 0

4-' i(j G

iL 0 0 ~ .

-M 4-' %A

EU- EU > AE E E

~ ~%4--

0L 0 a. CZC

GD GD GDI L GD r%. M 0 E

U-r

EU~ ~ *z2 G ~ D G

44-1

mc

I- -

U -A %A %A IA

LLU

Ln~

0- 0 0 0 +

006I

CC U-

0 z

00

0 4

0A 0

4A 0

~c c c >. r U

0
4- >

>U AAJ 4A to

cc m M~- --

0L 00 CL CL C-
00: 0 (U w 2E

a.~~ ~ >_ 0- 01 . . -~

LU W - CL (
EU
>%-+

0~

0

+l.

CI-E16

een
UJ E e4a

LU,

'n iS
Oc0

>- - - n u

LU 0 0o0

20 LU0
CC LA-a

~u. 0

o co
k- a %-

-- 0 o 0m5

I- . %A

>U :3 : M t ML

0 GJ Cc -

2 2 0 m ry m4 M k - 0o c

U,

u Z E

LU 0

LU ~ 4-LU

E- E

z --

z 2,

ElU 0 00 q- + 0 0

LU 0- 0 w 0
0 0

o

20 0

CC EU

ZZ 2

0 -
D. EU U?

c c

0~ wc0

'w~ E E E
EU 0

&- E E E

.2 EU EU 0 Lao -c E E E
U. &- w, > > > >

U.. U I- 0 0 A A CC CC CC
EU> 0 EU 0 m

EU EU EU EU

... LU

< mDzene mmr m IV~
z z U
LU LU

U--

00m

4-18

LAJq

UJ

U,

~LLJ

LU-

LU,

00. U,

LU 0

00
LU Z

~U-

IL-

4
00

Eu a

r -

LL. a

5. ~~LU -E j

20

<_ Z C -

000

Eu m

o4 1

LAW

U4J

Lui

0~0

Lu

OZ 2 LAr4 Cý4 oc 000a 000
cc .ý V-- q- W~y - V- V- V- q- T- z

-o-

lGo
%A 0A 0

LIL 0

0ý >% w 4.

m z ~~0

LA "3 b. b'-
;;- -0

0 =-- 0>G-C

T.. 0G~ 0-2 =.%A..hu4 c o .- > 0--w ;
0, -0 4-.'

0,0
c6 (n 0 0. E - -- ----

Go >% Irra I n~-T ýI.J = LZ-j : 5 CL 0

C41 % mmt

Lu.

z z 20-E -~mqrJV.
Lu Lu <

-i c-

Lu

4-20

Lu

~LU U

LLU

0. 0
X U

0- -

40cz
LA LA0 0 00A 0 0

00
U- 4

C A

%A E

__ w, 40-'Vl OV0 I
GDj E ~ - s- MV.. -U UU

M 00 c~0

~~- 0 -iG

,- .5 r4
>A >

C ~~~~~~4 0C UU ~ Gi ,0G Eo h.'A &.. ~U 1 ~ ~wo

co W-0 M A~~a - - A DCG LDAa mDG

_ a C4 ~ ~ "" 4

L" LU EN

U- a:

z~~~ z z - E A t0E

4-2

~j U 4 4' 4 4 4

z<

LLI

50
LUZ

%A-

LU C

Z. <

0 0R 0 0 0' 000 -i

20 0: T- T- V- V &

J=LL oLUJ LUJ L) LUJ LU LU LU LU LU

4- --

U~ ~ 4 %A 0cmJEN ~
02 2m '10 o V V~

-C -E .r > . W VI - E
Le. -

0

- zr c4 oU a= <2 -

-w~4 1-1 LJ- = D 0'.-- 0C .0C
31.. m. + . m u c -0 0

LU ~ ~ L 0 4;0 ~ ,~ow ,
4-o c. - 10ý-6~ G

CCo 0~ E0 cm 0n GC 0D
x Q 4-., ..Cc

SE m m m 0 c IA4

C 0- 0 -E
00 A -A -M M

4-G L- %AI
CL Z--O ccW C- w G

LL) U. 2 4) .;- 4- 4 UCjDLa

LL. co w
LUJ

20 tN w- EN C4 mI *LA

Z Z LUJC

LU
+U

44-2

SECTION 5
PROCESSING

In this section, a comprehensive dis- accessible missile sorties until all
cussion is provided describing how the missiles have been assigned. Each sortie
ALM CSC accomplishes its function. is initially constructed so that it has a
Specifically, a detailed overview of the number of DGZs within it (that have not
processing logic, implemented in ALM, yet received their full RV allotment)

is provided using flowcharts as the pre- that is equal to the number of RVs on a
sentation medium. Following that, a missile. The algorithm then attempts to

brief tutorial on the underlying concepts construct a feasible missile sortie that
and models of the ALM CSC is targets each of these DGZs once and that
presented. Finally, an identification and emphasizes downrange-to-uprange PBV
explanation of any program limitations travel. If a feasible sortie using these
is reported. For a discussion of flowchart DGZs is not possible, then the algorithm
symbology, see Appendix J. defers DGZs nearest the target centroid

and tries to form a feasible sortie using

5.1 PROCESSING FLOW successively smaller numbers of DGZs
The process used to assign RVs to until either a feasible sortie is found or it

DGZs and to schedule missile launches is decided, based on user-specified rules,
is shown in Figures 5-1 through 5-12 that those DGZs are "outcasts" that
using top-level, functional flowcharts, cannot be targeted effectively using the
However, before proceeding to a input weapon system.

discussion of these flowcharts a brief
overview of the ALM's methodology is To accommodate situations in
needed. which multiple RVs are targeted to

DGZs, the ALM defines and uses the

The ALM employs a heuristic, concept of layers. The n-th RV assigned

decision-making algorithm to identify to each DGZ is referred to as an nth
feasible missile sorties that fulfill (or layer RV, and the collection of such RVs
nearly fulfill) the input RV allocation is referred to as the n-th layer. Missile

and that satisfy user-prescribed sorties are similarly assigned a layer

targeting requirements and constraints, number. Specifically, a missile sortie's
This algorithm repeatedly sweeps across layer number is equal to the lowest layer

the target set from right to left forming number of its RVs.

5-1

Missile launch locations are 5.1.1 Program ALM

assigned to missile sorties as follows: The main program (ALM: Figure

"* The number of n-th layer missile 5-1) performs 12 major steps. Steps 1

sorties, Nn, is identified. through 6 involve reading ALM input

"* The Nn downrange-most, files and checking the input data. ALM

unassigned missile launch control data, RV allocation data, launch
locations are identified. location data, booster data, PBV data,

"* Missile launch location are and RV data are read from the first six

assigned to missile sorties in a ALM input files. Then ALM calls
right-to-left direction. This implies TRYFLY to see if the missile closest to

near-parallel, as opposed to the target island can drop all its RVs on

crossing, missile trajectories, the DGZ farthest from the launch

complex. If not, ALM stops
Once the missile sorties have been immediately; there's no point in

defined, a launch schedule is constructed allocating RVs if missiles can't reach the

that attempts to minimize either the RV target island.

downtime or missile launch time span.

If the objective is to minimize launch If the trial flight succeeds, how-

span, then the first-layer missiles are ever, ALM checks the number of Fratri-
launched as quickly as possible (either cide Constraints Files supplied in the

simultaneously or at the maximum Control File. !,;greater than zero, ALM
launch rate), and subsequent layer reads up to two (optional) input files,

missiles are launched to satisfy RV extracting the sure-safe time from each

inter-arrival time and launch rate file and associating it with a height of

constraints. If the objective is to burst. Next ALM calls ASR2TI to assign
minimize downtime span, then the first- RVs to the target island: this subroutine

layer missile launch times are set is the nucleus of the program and calls

(subject to launch rate constraints) to the greatest number of other subrou-

achieve simultaneous downtimes for the tines in the program. Finally, ALM calls

first RV deployed from each first-layer PREPAR to prepare data for the Attack

missile, and subsequent layer missiles File, writes it, and also writes the Sortie

are again launched so as to satisfy RV File.

inter-arrival time and launch rate

constraints. The three major subroutines called

by ALM will be described next, in the

5-2

ENTER ALM

RCNTRL Read ALM
Control File.

RALLOCi Read RV Allocation File.

RLAUINCj Read Launch Location File.

R T
y O Read Booster Data File.

7 RPBVFI R D
F Read PBV Data File.

SRRVFIL
ii Read RV Data File.

TRYFLY See if missile closest to target
island can drop all its RVs on DGZ•dNan
farthest from launch complex.

STOP Pointless to run any further.

FIGURE 5-1 PROGRAM ALM PROCESS FLOW

5-3

A ALM

ANY NO
CONSTRAINT

FILES?

Read sure-safe times from
Y;ES Fratricide Constraints Files

and use as times between
RSSAFElayers.

ASR2TI Assign RVs to target
island and schedule
launches.

\PRE PAR
\RP /Prepare data for Attack File.

\ WATCK /Write Attack File.

WSORTI
Write Sortie File.

EXIT

FIGURE 5-1 PROGRAM ALM PROCESS FLOW (Concluded)

5-4

order they're called: TRYFLY, ASR2TI, the downtimes of first-layer RVs. Note
and PREPAR. that true synchronization is possible

only if the time between launches is

5.1.2 Subroutine TRYFLY zero. Then ASR2TI calls ADJST1 to
TRYFLY (Figure 5-2) projects the adjust launch times and downtimes for

missile silos, and DGZs, onto a plane subsequent layers. Finally, ASR2TI
tangent to the earth at the target calls FXLYRS to fix the layer number
island's centroid. The coordinate system associated with each RV; i.e., to ensure
imposed on the plane has its positive X- that layer numbers and downtimes are
axis pointing downrange. The silo with both in ascending order for each string of
the maximum X-coordinate is therefore RVs going to the same DGZ.
the one closest to the target island, and
the DGZ with the maximum X- 5.1.4 Subroutine PREPAR
coordinate is the one farthest from the PREPAR (Figure 5-4) prepares
launch complex. TRYFLY forms a sortie data for the Attack File by sorting
consisting of the farthest DGZ, repeated missile and RV data. Missile launch
as many times as there are RVs on a times and RV downtimes are in
missile. Then TRYFLY calls CHKSRT ascending order. PREPAR also
to see if the missile can perform the computes the launch duration and
sortie. TRYFLY returns a !ogical flag laydown duration. Finally, PREPAR
that's TRUE if the missile can perform zeros the array containing probabilities
the sortie, FALSE if it can't, of fratricide for each RV.

5.1.3 Subroutine ASR2TI This concludes the description of
ASR2TI (Figure 5-3) does some major subroutines called by ALM. The

preliminary work before actually major subroutines called by ASR2T will
assigning RVs to DGZs. The most be described next, in the order they're
important steps in this phase are to called: ORDMSS, ASR2T2, and
define the right-to-left order in which ADJST1.
DGZs will be scanned, and the order in
which missiles will be used. The latter 5.1.5 Subroutine ORDMSS
step is performed by subroutine ORDMSS (Figure 5-5) projects the
ORDMSS, described later. ASR2TI calls missile silos onto a plane tangent to the
ASR2T2 to construct the sorties that earth at the launch complex's centroid.
target RVs to DGZs. If requested, The coordinate system imposed on the
ASR2TI calls SYNTIM to "synchronize" plane has its positive X-axis pointing

5-5

rENTER TRYFLY

PRPNTs /
, / Project all DGZs onto a tangent plane.

FMAX Find DGZ farthest from launch
complex: i.e., DGZ with
maximum X-coordinate.

PRPNT Project all silos onto a tangent
plane.

FMAX Find silo closest to target island: i.e.,/ silo with maximum X-coordinate.

Form sortie in which all RVs
hit farthest DGZ.

CHKSRT Check sortie; i.e., see if missile
can successfully deploy all RVs.

Indicate trial flight YES N Indicate trial flight
was possible. Successful? was impossible.

RETURNý To ALM (Figure 5- 1).

FIGURE 5-2 SUBROUTINE TRYFLY PROCESS FLOW

5-6

ENTER ASR2TI

Loop Over DGZs
-- - - -- ------------------------------

I I
I I

Zero number of RVs assigned to DGZ so far. Clear flag,
indicating DGZ is not an outcast. I I

I IF
IEnd G op. I

FN RT Determine which DGZs are the
vertices of a convex polygon
enclosing the target island.

Loop Over Missiles

I Loop Over RVs on Missil~es
I ------------------------------------- ~

II 1 I

ISet downtime Ito absurd value (-1.0). III I

End RVs Lo2 p--------------------

LEnd M issiles Loo --

R Prepare list of DGZs so target
island can be "swept' from right
to left.

DM Prepare list of missiles in the order
they should be used (in horizontal
strips from front to back: within a
strip, from right to left).

0
FIGURE 5-3 SUBROUTINE ASR2TI PROCESS FLOW

5-7

A ASR2TI

Assign RVs to DGZs.

Synchronize? If the span of RV downtimes should

be minimized, do so. Downtimes can

be synchronized only if the time
between launches is zero. Not
"synchronizing" RV downtimes

YNTIM means the span of launch times will
be minimized.

Adjust launch times and down-
times for subsequent layers.

FXLYRS Fix layer numbers in the string of RVs

going to each DGZ; i.e., ensure layer
numbers and downtimes for a string

y are both ascending sequences.

(RETURN) To ALM (Figure 5-1).

FIGURE 5-3 SUBROUTINE ASR2TI PROCESS FLOW (Concluded)

5-8

ENTER PREPAR

Loop Over Missiles
r -------------------------------- i

Copy data for each missile USED from arrays for ALL missiles in launch
complex.

I End Missile Loop I
L -------------------------------- J

Loop Over Missiles Used
I r -I

Sort used missile data so launch times are in ascending order.

II
I I
IEnd Used Missile Loop 1 I

Define earliest and latest launch times (first and last times in sorted
array). Compute launch duration (latest-earliest).

LoopOver Missiles Used L
LoopOver RVs per Missile

I I 4 I

Copy data from 2-dimensional arrays for RVs and missiles, and I
1-dimensional arrays for DGZs, to 1-dimensional arrays for RVs. Also, I

I zero probability of attrition for each RV.
I I I

IEnd RV Loop I
L---~ il

End Used Missile Loop-.

FIGURE 5-4 SUBROUTINE PREPAR PROCESS FLOW

5-9

A PREPAR

Loop Over RVs
r- -------------------------------

Sort arrays of RV data so downtimes are in ascending order.

End RV Loop

L J-------------------------------J

Define earliest and latest downtime (first and last times in sorted
arrays). Compute downtime duration (latest - earliest).

LoopOver Maximum Number of
6 - --- --- -- ---------------rFratriciOce ProbabilitiesI I

I I

Set the probability of fratricide for each RV, due to each preceding
RV, to zero.

I I
I I
LEnd Loop Over Maximum Numbero •r•rcTePrt bab tT•e; ----

(RETURN To ALM (Figure 5-1)

FIGURE 5-4 SUBROUTINE PREPAR PROCESS FLOW (Concluded)

5-10

SENTER ORDMSS

PRPNTS Project missiles in launch complex onto a
plane tangent to the earth at launch
complex's centroid. For now, negative
X-axis points to target island's centroid.

Loop Over Missiles

Invert signs on both missile coordinates. Now positive X-axis
points to target island and Y-coordinates decrease from right to
left, just like DGZ coordinates. Clear flag, indicating missile hasn't

been used yet.

LEndMissileL02P----------- - ------------ - -Lj

RDER Prepare list of pointers so missiles
can be accessed in descending order
of their X-coordinates; i.e., from
front to back.

Loop Over DGZs

I IF
I ~Zero the number of RVsI

I assigned so far.
I/ I

IEnd DGZ Loop I

Define index for first missile
to use: FIRST= 1.

0
FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW

5-11

A ORDMSS

Zero counter of DGZs that need at least one more RV.

Loop Over DGZs
r-----------------------------
II

DoeIG NO 8I

moredaRVV
II

I -Increment cntrof DGZs that need at least one
I I~more RV.cone

I
I I

!8

LEnd DGZ Lo2... . .-.-.-.-. . J

Compute number of missiles needed for current layer: integer divide
number of DGZs that need an RV by the number of RVs per missile. Call
the quotient NMCLAY.

Compute index for last missile to use in current layer:
LAST = FIRST + NMCLAY-1.

FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW (Continued)

5-12

c ORDMSS

Loop Over Missiles in Current Layer

I Sort pointers so missiles in current layer will be used from I
right to left; i.e., with Y-coordinates in decreasing order.

LEnd Missile Loop- - -

Compute number of RVs in current layer: multiply number of
missiles in current layer by number of RVs per missile.

Loop over DGZs

JI
IFI

Does DGZ NO D

Y ES1

Increment number of RVs assigned so far to DGZ. Decrement number of

I

RVs in current layer.

< U sed all RVs in YESI

End DGZ Loop

FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW (Continued)

5-13

E ORDMSS

Compute index for first missile in next layer:
FIRST = LAST + 1

O Go pick missiles for next layer.

F

SDefine number of missiles and RVs that will actually be

used.

Lo2p Over DGZs

I I
Zero number of RVs assigned to the DGZ so far I

II II '
LEnd DGZ Loop -

RETURN To ASR2TI (Figure 5-3).

FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW (Concluded)

5-14

downrange (towards the target island), meaning it is attacked by an RV from

and the edge of the launch complex one and only one layer. In a multi-layer

closest to the target island is considered sortie, at least one DGZ appears more
the "front" edge. ORDMSS prepares a than once, meaning it is attacked by RVs

list of pointers to the missii so they can from two or more layers.

be accessed in front-to-back order.

If ASR2T2 forms a single-layer

ORDMSS assigns missiles layer- sortie, it sequentially checks to see

by-layer. The missiles used for a layer whether the next missile to use can

lie in a "horizontal" strip (i.e., a strip perform one of the following four

parallel to the Y-axis) and are used in variations of a single-layer sortie:

right-to-left order. The number of RVs uprange, split, crossrange, or

in a layer equals the number of DGZs downrange. If the missile can't do any of

that still need at least one more RV. The these sorties, ASR2T2 forms a multi-
number of missiles in a layer is the layer sortie from the single-layer sortie

integer quotient of the number of RVs in by eliminating a DGZ and reassigning

the current layer divided by the number its RV to one of the remaining DGZs.

of RVs per missile. A counter associated

with each DGZ is initially cleared, and If ASR2T2 forms a multi-layer
incremented each time an RV is sortie, it checks to see whether the next

assigned to the DGZ. ORDMSS resets missile to use can perform the sortie (or

these counters to zero so they can be a couple of variations of it). If not,

used again to actually assign RVs to ASR2T2 forms a new multi-layer sortie
DGZs later on. by eliminating a DGZ and checks the

new sortie.

5.1.6 Subroutine ASR2T2

ASR2T2 (Figure 5-6) forms sorties If a sortie is reduced to just two

for all missiles to be used, by repeatedly DGZs, or if a sortie wastes RVs, one of

sweeping across the target island from the DGZs is marked as an outcast. Then,

right to left. The candidates for a sortie ASR2T2 tries to form another sortie.

consist uf the first n DGZs it encounters With the outcast no longer considered,

that need at least one more RV, where n perhaps a feasible sortie can be formed

is the number of RVs on a missile. There after all. If a partial missile load is

are two main types of sortie: single- required at the end, ASR2T2 calls

layer and multi-layer. In a single-layer MOPUP to use the remaining RVs as

sortie, each DGZ appears only once, efficiently aspossible.

5-15

p ERASR2T2

Prepare pointer to ordered list Start at target
of DGZ indices: ID = 1. island's right edge.

SPrepare pointer to ordered Ilist

of missile indices: IM =1

Get cur-ent missile index from
list: JM = ORMSLS (IM).

Count number
of RVs needed.

half a missile Go get DGZs

; for next sortie.

rih ms Go mop up.

SReset pointer to target island's rightmost DGZ: ID

S~Go count number

of RVs needed again-

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW

5-16

C ASR2T2

TSRT Get a sortie; i.e., a list

y / of DGZs in uprange order.

Pick height of burst for sortie's first DGZ as
height of burst for all DGZs in the sortie.

I Add time between launches to previous launch
time, yielding current missile's launch time.

re DGZs i NO Go check multi-

layer sortie.

YES•

ScHKSFT/

Check single-layer sortie.

reach their K Go store good
sortie data.

NO

D • Go form split sortie.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-17

Z ASR2T2

SPLSRT Form split sortie from uprange
sortie.

CHSR Check sortie.

Did all RVs YES K Go store good sortie
data.

CR RTi Form crossrange sortie.

HK7 Check sortie.

reach their K Go store good
DG~ssortie data.

• DWN Form downrange sortie.

Go checkS sortie.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-18

E ASR2T2

HK RT Check downrange sortie

Ddacl trs Go store good

sortie data.

UPSRT Reform uprange sortie

_ / from downrange sortie.

M L RT Form multi-layer sortie by deleting

one DGZ and reassigning its RVs to
another DGZ.

Check multi-layer sortie.

D~id all RVS YE

reach their Go see if sortie
s is wasteful.

NO

Count number of unique
DGZs in sortie.

H Go check number of
unique DGZs.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-19

[ASR2T2

Gomform ayew F YES morethan2 NO Go mark one of the

multi-layer sortie. u e DGZs as an outcast.

CHKWST Check for wasteful sortie; i.e.,
number of extra RVs assigned to DGZs
is more than half a missile load.

Is sortie
NO

Go store good

wsu sortie data.

YES

CSTOUT Cast out DGZ that's farthest
from target island's centroid.

Undo failed sortie: decrement launch
time and number of RVs assigned so
far to DGZs in failed sortie.

Go count RVs needed (outcast
will be ignored).

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-20

K ASR2T2

STRRT Store good sortie data.

Proceed to next missile: IM = IM + 1.

another M Go return.

missile?

YES .

Go use next V FTMove DGZ pointer to DGZ immediately to

missile. the left of the leftmost DGZ in the sortie.

L

MP Pp Use RVs on last missile as
effectively as possible.

M

RETURN To ASR2TI
(Figure 5-5).

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Concluded)

5-21

5.1.7 Subroutine ADJSTI 5.1.9 Subroutine MULSRT

ADJST1 (Figure 5-7) adjusts MULSRT (Figure 5-9) forms a

launch times and downtimes for all multi-layer sortie from a single-layer (or

layers beyond the first. When the user simpler multi-layer) sortie. It does so by

elects to minimize RV downtimes, then eliminating one DGZ and reassigning its

just before ADJST1 is called, ASR2TI RV(s) to the remaining DGZs. The DGZ

minimizes the span of downtimes for eliminated is the one furthest from the

first-layer RVs (if the time between sortie's vertical midline.

launches isn't zero), or synchronizes the

downtimes (if the time between launches 5.1.10 Subroutine CHKMLT

is zero). ADJST1 examines downtimes CHKMLT (Figure 5-10) checks to

layer by layer, postponing launches if see if a missile can perform a multi-layer

necessary, so the correct time between sortie. The sortie is first performed by

layers is maintained, moving uprange; any DGZ assigned

This concludes the description of more than one RV is hit by consecutive

major subroutines called by ASR2TI. RVs, before proceeding to the next DGZ.

The major subroutines called by If the current missile can't perform the

ASR2T2 will be described next, in the sortie, CHKMLT gives up. If the missile

order they're called: GETSRT, can perform the sortie, CHKMLTchecks

MULSRT, CHKMLT, and CSTOUT. the time between layers in the sortie. If

they're acceptable, CHKMLT returns; if

5.1.8 Subroutine GETSRT not, CHKMLT tries two variations of the

GETSRT (Figure 5-8) repeatedly uprange sortie that increase the time

sweeps across the target island, between layers.

gathering DGZs that need at least one

more RV. The number of DGZs needed The first variation moves uprange,

for a sortie equals the number of RVs on hitting each DGZ only once. Then the

a missile. DGZs marked as outcasts are PBV is instructed to return to the

ignored during sweeps. If there aren't beginning and sweep uprange again,

enough DGZs to complete the final hitting DGZs that get another RV. This

sortie, GETSRT assigns extra RVs to the is repeated if necessary. If the missile

most valuable DGZs in the partial sortie can perform this variation, CHKMLT

just formed. returns. If not, CHKMLT forms a second

variation.

5-22

: ENTER ADJST1

FNHIGH Find highest layer

among RVs on all
missiles used.

Begin Loop OverLaiers

Compute previous layer's number. I

Fratricide 'Y AConstraints
Files?I

N I0

GTBLYR Get time betweenlayers from list included

in Control File.
I I

Use larger of time between launches and time I
between layers as time between layers.

BerinLoop Over Missiles Used. -

Use
ConstraintsI

FIGURE 5-7 SUBROUTINE ADJST1 PROCESS FLOW

5-23

SADJST1

S~time between layers.GT, Y2Use sure-safe time as

Use larger of time between launches and time
between layers as time between layers.

Zero RV counter and set smallest downtime 1i
difference to absurdly large value. I

Begin Loop Over RVs on Missile

Is RV

I ICurrent Layer! F

FNPREV Find RV in previous layer
that attacks same DGZ.

Found N
• Previous RV? A4

FIGURE 5-7 SUBROUTINE ADJSTI PROCESS FLOW (Continued)

5-24

I I DD ADJST1

III ~Are I

I missiles?

iii YES

I I I Increment number of RVs whose downtimes
I I Ineed adjustment.

I Update smallest downtime difference.I

Ill I IE

IllFM WrtIarigmesg
in Statu File

III IIIN

FIIGR 57SBOTN D IPOESFO(Cninud

5-25

II G ADJST1

SCompute adjustment: subtract smallest difference

in downtimes from tim e between layers.

I I

I to AaS4 djusttob launches0 oajs tobe las

II dwtm.III, I

BgnLoopOve MissilesL~P _To ADJST? Adjust FLOW tei

I I in ~~~~~~downtimesfo tiebwenlyr.

5-26

II- II

H ADJST1

I End Missile LoopL. J I

LEnd Layer Loop -- I

EXIT

FIGURE 5-7 SUBROUTINE ADJSTI PROCESS FLOW (Concluded)

5-27

ENTER GETSRT

A

TR Count RVs needed by DGZs
from current DGZ through
leftmost DGZ.

Need m r E
than jr the RVs

the ri qhtmost . E .

A Reset pointer so rightmost DGZ is the current DGZ.

Prepare pointer used to stc - sortie data in lists.

II

0
FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW

5-28

y GETSRT

Has DGZ YES
<•gotten allIRVs •

-assigned, or

more?

Add DGZ to sortie.

SIncrement pone o sortie lists.

Increment DGZ pointer.

NO target is and's

FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW (Continued)

5-29

Y GETSRT

Reset pointer to target island's rightmost DGZ.

Try to assign RVs from
subsequent layers to DGZs in
the sortie.

< Any, RVs still
H

left?

YESJ

T Add extra RVs to most
valuable DGZs in the sortie, to
use up missile load.

5-0

FF

Does # of YE
DGZs = # Of

RVs?

NO

0
FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW (Continued)

5-30

G GETSRT

R FM Write warning message in Status File.

Abort run.

yH

SRTSRT Sort lists of sortie data so DGZs

are in uprange order.

CTN Count unique DGZs in sortie.

FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW (Concluded)

5-31

ý ENTER MULSRT

P TR
Compute sortie's mean Y-coordinate.

Find DGZ furthest from mean
Y-coordinate.

Count the number of times the furthest DGZ appears in the sortie.

Delete each occurrence of the furthest DGZ, and associated entries,
from the lists defining the sortie.

Decrement the number of RVs assigned so far to the deleted DGZ.

Count the number of unique

DGZs in the sortie.

Clear flag associated with each unique DGZ, indicating it hasn't been

reassigned an RV from the deleted DGZ.

FIGURE 5-9 SUBROUTINE MULSRT PROCESS FLOW

5-32

B A MULSRT

BegQn Loop Over Number of RVs

rAs-signed-to D7ertedgZCT------ --

I Form lists of unique DGZs in sortie,
number of times each DGZ
appears, and starting layer for
each DGZ.

Examine unique DGZs that haven't been reassigned an RV
from the deleted DGZ. Count the number of DGZs that need
at least one more RV

N
I

Find LEAST valuable DGZ among unique DGZs that haven't

been reassigned an RV from the deleted DGZ, and that still

need at least one more RV.

Iy

I

Find MOST valuable DGZ among unique DGZs that haven't

Sbeen reassigned an RV from the deleted DGZ.

FIGURE 5-9 SUBROUTINE MULSRT PROCESS FLOW (Continued)

5-33

D MULSRT

I IF

Reset flag corresponding to each unique DGZ, indicating it

hasn't been reassigned an RV from the deleted DGZ; i.e.,

prepare for a new pass.
I

y E

ReSet flag corresponding
to DGZ just found, indicating it has

been reassigned an RV from the deleted DGZ.

Increment numberpof DGZs in sortie.

AD Z Append DGZ just found

A T Q Z 1 to sortie.

tEnd RV Loop

-I -J -I

I I
Immmil limlmmm m m mlmm mm m m nmmmm m

EXIT

FIG R 5-IURUIEM L RO ESFO Cnldd

I5-3

ENTER CHKMLT

Form uprange sortie.

CHKSRT See if r-- ssile can do sortie.

TM•/ Check downtime differences for

all RVs attacking the same DGZ.

S it Form sortie that moves up-
Trange, back to the beginning,

and uprange again.

FIGURE 5-10 SUBROUTINE CHKMLT PROCESS FLOW

5-35

A CHKMLT

CHKSRT See if missile can do sortie.

FMABBAi Form sortie that moves uprange, turns
around, and moves downrange.

CHKSRT/ See if missile can do sortie.

<Successful?7 E

N O

$RTSRT Form up-range sortie again.

B

EXIT

FIGURE 5-10 SUBROUTINE CHKMLT PROCESS FLOW (Concluded)

5-36

The second variation moves 5.1.12 SubroutineADJST5
uprange, hitting each DGZ only nce. ADJST5 (Figure 5-12) examines
The PBV is instructed to turn around all missiles used, finding the first-layer
and move downrange, hitting DGZs that missiles. These are the missiles whose
get another RV. This is repeated if first RVs to arrive are the first to attack
necessary. their respective DGZs. ADJST5 forms

two lists corresponding to the first-layer
If the missile can perform this missiles it finds. The first list contains

variation, CHKMLT returns. If not, launch times and is sorted in
CHKMLT reforms the original uprange DESCENDING order. The second list
sortie, indicates it's a successful sortie contains times-of-flight for the first-
even through times between layers are layer RVs and is sorted in ASCENDING
incorrect, and returns, order. By pairing shorter times-of-flight

with later launch times, and longer
5.1.11 Subroutine CSTOUT times-of-flight with earlier launch

Subroutine CSTOUT (Figure 5-11) times, the span of downtimes is
marks a DGZ as an outcast, so it is minimized.

ignored in any subsequent sweeps.
Within CSTOUT, DGZs are divided into 5.1.13 Subroutine CHKSRT
two types: vertices of the convex polygon CHKSRT provides the ALM
enclosing the target island, and interior interface to the TARGET CSC modules
points. CSTOUT scans the current that are linked to, and used by, ALM to

sortie, looking for the vertex furthest CHeck SoRTie feasibility.
from the target island's centroid, and the This concludes the description of
interior point farthest from the centroid. ALM's most important subroutines.
If CSTOUT finds a vertex, that DGZ is Detailed descriptions of all subroutines
marked as the outcast; otherwise the can be found in Appendix C.
DGZ that's the furthest interior point
becomes the outcast. 5.2 CONCEPTS AND MODELS

The most important concept under-
This concludes the description of lying the ALM is shown in Figure 5-13,

major subroutines called by ASR2T2. which illustrates the tangent-plane
The last subroutine to be described by coordinate system used to specify the

flowchart is ADJST5, which minimizes positions of DGZs and silos. This figure
the span of downtimes for first-layer defines and illustrates the terms "left",
RVs. "right", "-" wnrange", etc., that have

5-37

i ENTER ICSTOUT

SSet distance ofDGZ furthest from target island centroid to

absurdly small value. Also set distance of furthest vertex to

same value.

Clear vertex index, indicating a DGZ in the sortie that's also a
vertex hasn't been found yet.

BeginLoop Over DGZs in Sortie

FN RMA Form norm ofvector from
origin to DGZ; i.e.,

I distance from centroid.

Iis distance NO

Update furthest DGZ distance.

II
aIs DGZ NO

YES1

FIGURE 5-11 SUBROUTINE CSTOUT PROCESS FLOW

5-38

A CSTOUT

I ~Is distance N

YES•

S Update furthest vertex distance.

IF•I

End DGZ Loo

Make furthest YES F NO Make furthest
FoundxthVeoucext?"DGZ the outcast

T
L EE2 F Write information message in

Status File indicating DGZ was
cast out

FIGURE 5-11 SUBROUTINE CSTOUT PROCESS FLOW (Concluded)

5-39

ENTER ADJST5

Prepare pointer to lists that will contain the missile index
and the launch times for each first-layer missile.

BPin Loop Over Missiles Used

----------------- --------------- 9

_i n.FIRST LAYE

F Increment pointer.

IEnd Missile Loop -I

Sod ad l Sort list of launch times

in DESCENDING order.

Sort list of missile indices so downtimes of fir w, to
arrive from each missile are in ASCENDING order.

I@

FIGURE 5-12 SUBROUTINE ADJST5 PROCESS FLOW

5-40

a ADJST5

Becin LooaOver 1st-Laer Missiles ..
r-

Compute adjustment. subtract missile's launch time from
entry in sorted list of launch times.

IADJ T4 Adjust launch time
and RV downtimes.

L End Missile Loop - -

EXIT

FIGURE 5-12 SUBROUTINE ADJST5 PROCESS FLOW (Concluded)

5-41

-X (Uprange: "NORTH")

8

LAUNCH
COMPLEX 6

S.Front

Numbers beside silos indicate order
in which missiles are used; i.e., in
horizontal strips from front to back.
Within each strip, missiles are used
from right to left, the same direction
as the sweep across the target island.

TARGET Target island's centroid is the origin
ISLAND of the coordinate system.

-Y +Y

Left: "WEST"
Right: "EAST'

& Sweep from right to
left to form sorties.

SX (Downrange: "SOUTH")

FIGURE 5-13 TANGENT-PLANE COORDINATE SYSTEM

5-42

"right", "downrange", etc., that have to be the height of burst for all DGZs in

already been used in subroutine the sortie, and it is used to pick the time

descriptions, between layers.

5.3 MODEL LIMITATIONS If Fratricide Constraints Files are

There are limitations in the ALM used, ALM is indirectly subject to the

CSC, resulting from a variety of model limitations of CAIN and NWEM.

considerations: speed of execution, Because ALM calls modules in TARGET

available computer memory, and design via the interface routine CHKSRT, ALM

compromises. is subject to the model limitations of

TARGET; i.e., limitations on modeling

In ALM itself, the height of burst booster, PBV, and RV performance.

for the first DGZ in a sortie is considered

5-43

SECTION 6
OUTPUTS

All data generated by the ALM 6.2 GRAPHICAL

CSC ar. placed into three files: the ALM
Status File (4.1); the Attack File (4.2); Two maps are produced by the

and the Sortie File (4.3). The ALM GRAPHS CSC from the ALM output

Status File informs the user as to the files. The Attack File can be used to
success or failure of an ALM execution draw a Trajectory Projection Map, show-
and presents information, warning, and ing the flight of each missile super-

error messages generated during the imposed on a map of the earth (see
execution of ALM. The Attack File con- Figure 6-4). The Sortie File can be used
tains launch time and downtime statis- to draw a Sortie Map (see Figure 6-5).

tics, missile launch times, and RV data These maps can be drawn on the video
(downtimes, DGZs attacked, HOBs, and monitor, the color PaintJet, or the black
probabilities of attrition and fratricide), and white LaserJet.

The Sortie File describes the kind of

missile used in the attack and, for each 6.3 REPORTS
missile, the DGZs attacked by the RVs
on the missile. All three files may be Three special reports can be
reviewed and/or printed by the user produced by the MMI CSC from the

through the MMI, by selecting the ALM Attack File. The data in the file
'REVIEW A CASE" option in the MPS can be listed by DGZ, by missile, or by

main menu. In fact, the Attack File can RV. Figures 6-6 through 6-8 show

be reviewed in three ways: by missile, by examples of these reports.
RV, and by DGZ.

6.1 OUTPUT FILES

Figures 6-1 through 6-3 present

the 1OPTs for the three output files

generated by the ALM CSC.

6-1

I-

z

z
_j LU

z
IhJ

~LU k

00

LUJ

LU LV

0L C) EN E-E E N ~
~LL -

20 0

U- :D

c

Ot4- W CL CL
z ~ ~ ~ %I.. M M Z>

wE ~E U

E EE E

~o t-
LUt 0 %A E0 E- E N f

cz zUJ
%U L _ _ _D_ _

z0 z
ui LU

-6-

64 -IkA 4A 4.A AA GA AA 4A

CL 2 A fA fA 4A $A $A IA

z
LUI Il A IA IA %A %A 4A

4- z 4-U U U U
LU IAJ IA IA IA IA IA A

0 -

a: cwUer n

SLAJ < -0 00 0 000 0

00

LL L LLL.L LA- U- LL LL UL LL-

a, 4

IA I

0c c %

AU E a,
4- 0 . L

zL z a, o
0~~ U c~'c ~ I

EU 1 E z A
;Iz A ac a,

0. 1.. t40 0

-r :r IA ZU I-i a, EU -jL -1

EU 0o .LU.

UL LU <U
CL U: 0 <

cc~ac
4-00 E

-~~~ EN0gz UJA--
EU < 0~0~IA~ uA

4- - = a,-3

z
LL3 u (M IM %A %

LULU-o -

LU.

LLJ- 0
M 0E 0 Go

-0 0 M~ To~ . ~ - I
L LU z- + + 7:7 + C

cz C;

cc0 (71 0 c

cr U- -

U. M'L 0~

LL 0.

- 0 _ LS

0 IV.=C

0. Go.-M. G03 1C CC 4- a - =a
'U~~0=* CM Cd doCO b **~. U C

U- ý 4,0 00-0 0A1G

LU LUA -2 4>

Z~~~ Z) 4A -E E

0l
C C w %r- - 0z

U.E'OM - b

1= C CL CL w C.6-4 -- w h 4

&AU

zz
LALU

LU
a-

LU

01 0 0 F

LLA 0U Z - E ~9

200

~LL.
zoz

LA. LA - LC

.;A m0
#A >~ >J > >L

LL 0

' N
0 % 0 A=j

%A r 0
4) >% b- 0 a

a.~~L CL :2V- G.
W 0

EL -n Z 4- 4..,

G.o -r --
Ga %A EU EUEU

-~~~ ~~ 0 0- ~ . 'c ~

EU L"

D Ga 4D 4'i. *

zU z > 20 o as In Q

LU L" EN

-j-c
CLU

6-5

LI-1=

0-

000u L -A o
F- z r14 EN e4 + +-

0 z0

LL~

en m -

UL-

0-

I - :3 :3 .c -~ CL,

0'0 +m 400.

4A ? . - 'C 0 0ým o 2L :' 3

vi_ - -'0 'C Q

00 C 0 C%.
LU '0 o > > W ~ Wd

'0 0 -~~ a. r. E- 0 '* E **
C E '0 It- E. --

o 0 0 0 0 '03

LA 0 w 22 0~Iw~ E E0 E ENc - N N N - N
t :3 :3 : :3.!A > 0 LI) 03 Q 3c- -J m m ~~000

2 F-

z z LAi 20 t-4r~ m -q LrS D. rN '- m Lfs %DO
-LJ 4U < z

LA- LL

ar-
00
Liz
LU

6-6

LLLI

-o

LIZ

6-7

00

-6-8

ATTACK DESCRIPTION BY DGZ

Case = CASEiC Missile System = US-3RV
tiumber of RVs - 12 Number of Missiles = 4

DGZ RV DOWNTIME MISSILE ORDER IN MISSILE

1 1 1522.9 7 2
2 1 1520.9 7 1
3 1 1525.1 6 3
4 1 1520.9 6 1
5 1 1522.8 6 2
5 2 1526.9 4 2
5 3 1529.4 4 3

10 1 1520.7 5 1
12 1 1525.0 5 3
14 1 1524.8 4 1
44 1 1522.7 5 2
60 1 1525.3 7 3

FIGURE 6-6 ATTACK DESCRIPTION BY DGZ

6-9

ATTACK DESCRIPTION BY MISSILE

Case = SAMPLE1 Missile System = US-3RV
Number of RVs 18 Number of Missiles = 6

MISSILE LAUNCH TIME RV DGZ DOWNTIME LAYER

3 .0 3 1 1809.5 1
3 .0 2 4 1814.0 1
3 .0 1 7 1818.1 1

2 .2 3 2 1809.6 1
2 .2 2 5 1814.1 1
2 .2 1 8 1818.1 1

1 .3 3 3 1809.6 1

1 .3 2 6 1814.1 1
1 .3 1 9 1818.1 1

6 .5 3 1 1812.2 2
6 .5 2 4 1816.7 2
6 .5 1 7 1820.6 2

5 .6 3 2 1812.2 2
5 .6 2 5 1816.7 2
5 .6 1 8 1820.6 2

4 .7 3 3 1812.2 2
4 .7 2 6 1816.7 2
4 .7 1 9 1820.6 2

FIGURE 6-7 A'rrACK DESCRII'TION BY MISSILE

6-10

ATTACK DESCRIPTION BY RV DOWNTIME

Case = CASEIC Missile System = US-3RV
Number of RVs = 12 Number of Missiles = 4

RV DOWNTIME DGZ MISSILE ORDER IN MISSILE

1 1520.7 10 5 1
2 1520.9 2 7 1
3 1520.9 4 6 1
4 1522.7 44 5 2
5 1522.8 5 6 2
6 1522.9 1 7 2
7 1524.8 14 4 1
8 1525.0 12 5 3
9 1525.1 3 6 3

10 1525.3 60 7 3
11 1526.9 5 4 2
12 1529.4 5 4 3

FIGURE 6-8 ATTACK DESCRIPTION BY RV

6-11

SECTION 7
ERROR PROCESSING

There are two major categories of data it receives. If errors are
error processing within the MIPS. The encountered, the CSC reports the error
first is input data error checking. The as described below.
second is trapping and reporting run-
time errors encountered during CSC When a CSC is executed, run-time
execution. errors can occur. Each CSC is designed

to trap as many of these errors as possi-
Adhering to the user-friendly ble, produce helpf, ' information regard-

design of the MPS, the man-machine ing the error, and write the error infor-
interface (MMI) checks numeric data for mation to a status file. The EXEC CSC
valid ranges when the data is entered. subsequently processes this file when the
Thus, for every input data file created by CSC terminates and displays any errors
the MPS, the MMI checks all of the encountered during the CSC execution.
numeric data. When entering data, the Errors such as those generated during
MMI displays the valid range for a value 1/0 operations, invalid input data, or
in the lower section of the panel. If a errors produced by utility routines are
value is entered outside of this range, the processed via the status file mechanism.
MMI warns the user with a beep and

displays the incorrect value, in red, Every CSC creates a status file
directly below the range specification in whether or not it generates any run-time
the lower section of the panel. In errors. The first record in the status file
addition to range checks, the MAU also consists of the case name and the time
performs some non-specification checks, and date the CSC was executed. Sub-

Specifically, the MMI does not allow a sequent records contain status messages
case to be saved unless a valid case name generated during the CSC execution.
and a missile type have been selected. These messages are of four types or

levels of severity: success, information,

The MMI cannot check all of the warning, and error. Each message con-
input character data or combinations of sists of its type, the time and date it was
numeric data that may cause errors generated, the module in which it was
during CSC execution. Thus, each CSC generated, and the message text. The
performs additional checks on the input

7-1

CSC must terminate the status file with ALM: RCNTRL: Case name is blank.

either a success or error message. Can't even begin to

run.

In the following messages, integers

printed within messages are represented WRSFFR: Bad logical unit!

by "[i]", "U]", and "[k)"; real numbers by Must be > 0 and

"[x]" and "[y]"; and strings by "sssss". < 100, but not 5 or 6.

Logical unit: [i]

Note that the case name comes Case name: "sssss"

from the Control File's first record. If an CSC indicator: U]
error occurs while trying to read it, or if

the case name is invalid, or if the Status WRSFFR: Bad case name!

File can't be opened, a paradox arises. Length must be > 0

The Status File is the only authorized and < 9. Can't be

medium for reporting errors, but an blank.

error has occurred before the Status File Logical unit: [ii

exists! In this situation, an error Case name: "sssss"

message is displayed on the VDT and the CSC indicator: U]
CSC stops. These special error messages

are as follows: WRSFFR: Bad CSC identifier!

Must be > 2

ALM: RCNTRL: Error reading case but < 11.

name and description. Logical unit: [i]

Control File's 1st Case name: "sssss"
record is bad. CSC indicator: U]
ALM aborted.

WRSFFR: Couldn't open status

ALM: RCNTRL: End-of-file reading file!

case name and

description. WRSFFR: Couldn't write status

Control File's 1st file's first record!

record is bad.

ALM aborted. After CSC termination, the EXEC

CSC reads the status file. Success and
information messages are not errors and

the EXEC does not process these

7-2

messages. If the EXEC does not encoun- encountered. These cases might occur if

ter any warning or error messages, it a CSC aborts before it can create a status

automatically continues processing the file or if a fatal error is not trapped and

CSC execution chain. If an error mes- reported by the CSC.

sage is found, the EXEC interrupts the

execution chain, displays the error mes- Information, warning, and error

sage, and allows the user to continue the messages specific to the ALM are listed

chain or abort and return to the MMI. in Figures 7-1, 7-2, and 7-3, respectively.

The user may also view the entire status Beyond an arbitrarily chosen point in its

file before deciding whether to continue, execution, if the ALM aborts, it dumps

Warning messages are processed in the the contents of all COMMON blocks to

same manner as errors. However, the the Status File. The name of each

user can direct the EXEC to trap or variable in COMMON and its value are

ignore warning messages before the CSC written as an information message; e.g.

chain is executed. If warnings are LDURAT = 2.5470000E+01. These
ignored, they are treated like informa- kinds of messages aren't shown in Figure

tion messages. The status file is a for- 7-1.

matted file and the user may also view or

print the file outside of the EXEC/MMI. In the following figures, integers

printed within messages are represented

Finally, the EXEC will interrupt by "[i]" through "[n]"; real numbers by

the CSC execution chain if no status file "[xl" and "[y]"; and strings by "[s]" and

is created by the CSC or if no termina- "[t]".

tion (success or error) message is

7-3

MODULE MESSAGE

DPATTA ***** COMMON block /ATTACKJ /

DPCNTR * COMMON block /CNTROL***

DPLC * COMMON block /LCI *****

DPOPSHNS * COMMON block /OPSHNSI**

DPSORTIE * COMMON block /SORTIE/I *

DPTI *****COMMON block/TI/*****

DPWEAPON * COMMON block IWEAPON/**

ORDMSS [i] missile(s) ([j] RV(s)) will be used.

ORDMSS 1 missile was specified.

ORDMSS [ii missiles were specified.

OUTCST DGZ [i] is an outcast.

RALLOC Record [i] in the RV Allocation File is an end-of-file.

RALLOC Read RV Allocation File with no errors.

RBOOST Read Booster File with no errors.

RCNTRL (s] (where "Is]" represents the case description).

RCNTRL Since no fratricide models were specified, times between layers
will be read from the Control File's last record.

RCNTRL Read Control File with no errors.

RCNTRL Read Launch Location File with no errors.

RPBVFI Read PBV File with no errors.

RRVFIL Read RV File with no errors.

RSSAFE Read sure-safe time(s) from Fratricide Constraint File(s) with no
errors.

WSORTI Wrote Sortie File successfully.

FIGURE 7-1 ALM INFORMATION MESSAGES

7-4

MODULE MESSAGE

ADDGZ1 Bad sortie index!
Index = [i].
Can't be < 1 or > [j].
Upper limit is number of RVs per weapon.

ADDGZ1 Bad DGZ index!
Index = [ij.
Can't be < 1 or> [j].
Upper limit is number of DGZs per target island.

ADDGZ1 Too many RVs for one DGZ!
Number of RVs = i}.
Can't be > [j].
DGZ index = [k].
DGZ number = [m].

ADDGZ2 Bad sortie index!
Index = [i].
Can't be < 1 or > [j].
Upper limit is number of RVs per weapon.

ADDGZ2 Bad unique DGZ index!
Index = [i].
Can't be < 1 or > [j].

_ _ Upper limit is number of DGZs per target island.

ADJST1 Can't find previous layer's RV!
Current layer = [i].
Previous layer = [j].
Missile = (k].
DGZ = [m].

ADLAYR Bad index for sortie lists!
Index = [i].
Must be > 1 but not > [j].

ADLAYR Bad number of RVs!
Number of RVs = [i].
Must be > 0 but not > [j].

ADXTRA Bad index for sortie lists!
Index = [i].
Must be > 1 but not > [j].

ADXTRA Bad number of RVs!
Number of RVs = [iW.
Must be > 0 but not > [j].

ALM Can't reach farthest DGZ from silo closest to target island!

FIGURE 7-2 ALM WARNING MESSAGES

7-5

MODULE MESSAGE

ABRTRN Aborting Allocation CSC (ALM).
Contents of COMMON blocks follow.

FNPREV Couldn't find previous RV attacking DGZ!
DGZ index = [i].
Previous layer = [i].

GETSRT Number of DGZs in sortie doesn't equal number of RVs on missile!
Number of DGZs = [i].
Number of RVs = [51.

GTBLYR Bad layer number!
Layer number = [i].

MOPUPC Couldn't find sortie to repeat!

MOVLFT Couldn't find matching DGZ!
Leftmost DGZ in sortie = [i]

ORDMSS Ran out of missiles!
NMSLLC = [i]
FIRST = [j]
LAST = [k]
NDNEED = [m]
NRVSWP = [n]

PREPAR Bad number of missiles used!
Number of missiles used = (i]
Should b,- at least 1.

PREPAR Bad number of RVs!
Number of RVs used = [i]
Should be at least 1.

RALLOC Bad target island elevation.
Can't be < 10000 feet or > 30000 feet.

RALLOC Couldn"t open RV Allocation File!
File = "Is]".

RALLOC Target island label is blank.

RALLOC Error reading RV Allocation File's 1st record.

RALLOC End-of-file reading RV Allocation File's 1st record.

RALLOC Error reading RV Allocation File's 2nd record.

RALLOC End-of-file reading RV Allocation File's 2nd record.

RALLOC Error reading RV Allocation File' 3rd record.

RALLOC End-of-file reading RV Allocation File's 3rd record.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-6

MODULE MESSAGE

RALLOC Error reading RV Allocation File's [ilth record.

RALLOC End-of-file reading RV Allocation File's [ilth record.

RALLOC Bad height-of-burst (HOB)!
Can't be < 0 or > 32000 feet.

RALLOC Bad number of missiles attacking target island.
Number of missiles = [i].
Can't be < 1 o. > [i].

RALLOC Bad number of RVs allocated.
Number of RVsallocated = [i].
Can't be < 1 or > [i].

RALLOC Number of RVs isn't an integer multiple of number of missiles!
Number of RVs = [i].
Number of missiles = (j].

RALLOC Error skipping RV Allocation File's
[ilth record.
Error ignored.

RALLOC End-of-file skipping RV Allocation File's
[1i]th record.

RALLOC Bad index descriptor for DGZ [i].
Index descriptor = [j].
Can't be < 1 or > 9999.

RALLOC Bad DGZ type for DGZ [i].
DGZ type = [j].
Can't be < 0 or > 2.

RALLOC Bad latitude for DGZ [i].
Latitude = [x].
Can't be < -90 or > + 90'• grees.

RALLOC Bad longitude for DGZ [i].
Longitude = [x].
Can't be < --180 or > + 180 degrees.

RALLOC Bad height-of-burst index for DGZ [i].
Index = [j].
Can't be < 1 or > [k].

RALLOC Bad number of RVs for DGZ [i].
Number of RVs = [iJ.
Can't be < 1 or> 1k].

RALLOC Record (i] (DGZ [j]) had 1 error.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-7

MODULE MESSAGE

RALLOC Record [i] (DGZ [i]) had [i] errors.

RALLOC No allocation records!

RALLOC Number of Fratricide Constraint Files is less than number of heights-
of-burst.
Number of files = [i]
Number of HOBs = [i]

RALLOC Number of Fratricide Constraint Files is greater than number of
heights-of-burst.
Number of files = [i]
Number of HOBs = [01

RBOOST Couldn't open Booster File!
File = "[s]".

RBOOST Error reading Booster File.
File = "[s]".
Record number = [i]

RBOOST End-of-file reading Booster File.
File = "[s]".
Record number = [i]

RBOOST Inconsistent number of RVs per weapon!
Number of missiles in attack = [i]
Number of RVs allocated = [j]
Quotient = [k] RVs per missile But according to Booster File, there are
[m] RVs per missile!

RCNTRL Error reading name of RV Allocation File!
Control File's 2nd record is bad.

RCNTRL End-of-file reading name of RV Allocation File!
Control File's 2nd record is bad.

RCNTRL Name of RV Allocation File is blank!
Control File's 2nd record is bad.

RCNTRL Error reading name of Launch Location File!
Control File's 3rd record is bad.

RCNTRL End-of-file reading name of Launch Location File!
Control File's 3rd record is bad.

RCNTRL Name of Launch Location File is blank!
Control File's 3rd record is bad.

RCNTRL Missile name is blank!
Control File's 3rd record is bad.

RCNTRL Error reading Booster File record number and name.
Control File's 4th record is bad.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-8

MODULE MESSAGE

RCNTRL End-of-file reading Booster File Data and name.
Control File's 4th record is bad.

RCNTRL Name of Launch Location File is blank!
Control File's 3rd record is bad.

RCNTRL Bad record number for booster file!
Record number = [i].

RCNTRL Booster File Name is blank!

RCNTRL Error reading PBV File record number and name!
Control File's 5th record is bad.

RCNTRL End-of-file reading PBV File record number and name!
Control File's 5th record is bad.

RCNTRL Bad record number for PBV file!
Record number = [i].

RCNTRL PBV File Name is blank!

RCNTRL Error reading RV File record number and name!
Control File's 6th record is bad.

RCNTRL End-of-file reading RV File record number and name!
Control File's 6th record is bad.

RCNTRL Bad record number for RV file!
Record number = [i].

RCNTRL RV File Name is blank!

RCNTRL Error reading number of fratricide models and path!
Control File's 7th record is bad.

RCNTRL End-of-file reading number of fratricide models and path!
Control File's 7th record is bad.

RCNTRL Bad number of fratricide models!
Number of models = [i]

RCNTRL Path for fratricide models is blank!

RCNTRL Error reading names of fratricide constraint files!
Control File's 8th record is bad.

RCNTRL End-of-file reading names of fratricide constraint files!
Control File's 8th record is bad.

RCNTRL 1st Constraint File name is blank.

RCNTRL 2nd Constraint File name is blank.

RCNTRL 3rd Constraint File name is blank.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-9

MODULE MESSAGE

RCNTRL 4th Constraint File name is blank.

RCNTRL Error reading Attack File name!
Control File's 9th record is bad.

RCNTRL End-of-file reading Attack File name!
Control File's 9th record is bad.

RCNTRL Attack File name is blank.

RCNTRL Error reading Sortie File name!
Control File's 10th record is bad.

RCNTRL End-of-file reading Sortie File name!
Control File's 10th record is bad.

RCNTRL Sortie File name is blank.

RCNTRL Error reading run options!
Control File's 1 1th record is bad.

RCNTRL End-of-file reading run options!
Control File's 1 lth record is bad.

RCNTRL Fraction of fuel for range extension is bad!
Fraction = [x]

RCNTRL You've allocated [x] of the fuel for range extension but the missile has
no PBV!
Range(s) won't be extended.

RCNTRL Reentry angle is bad!
Angle = Ix]

RCNTRL Error reading times between layers!
Control File's 12th record is bad.

RCNTRL End-of-file reading times between layers!
Control File's 12th record is bad.

RCNTRL 1st time between layers is bad.

RCNTRL 2nd time between layers is bad.

RCNTRL 3rd time between layers is bad.

RCNTRL [i]th time between layers is bad.

RCNTRL No times between layers on Control File's last record. At this point,
however, the number of layers is unknown. If there's only one layer in
the attack, there's no problem.

RCNTRL Control File contained [i] errors.

RLAUNC Couldn't open Launch Location File!
File = "[s]".

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-10

MODULE MESSAGE

RLAUNC Error reading Launch Location File's 1st record.

RLAUNC End-of-file reading Launch Location File's 1st record.

RLAUNC Launch complex label is blank.

RLAUNC Bad number of missile silos.
Number of missile silos = [i]
Can't be > [j].

RLAUNC Bad number of missile silos.
Number of missile silos = [i]
Can't be < [jJ; i.e. number of missiles specified in Attack File.

RLAUNC Error reading Launch Location File's 2nd record.

RLAUNC End-of-file reading Launch Location File's 2nd record.

RLAUNC Bad latitude for co-located silos.
Latitude = [x].
Can't be < -90 or > + 90 degrees.

RLAUNC Bad longitude for co-located silos.
Lon itude = [x].
Can t be < -180 or > + 180 degrees.

RLAUNC Bad elevation for co-located silos.
Elevation (altitude) = [x].
Can't be < -10000 feet or > 30000 feet.

RLAUNC Error reading Launch Location File's 3rd record.

RLAUNC End-of-file reading Launch Location File's 3rd record.

RLAUNC Error reading Launch Location File's [i]th record.

RLAUNC End-of-file reading Launch Location File's [ijth record.

RLAUNC Bad missile index for [i]th missile.
Missile index = [i].
Can't be > [j].

RLAUNC Bad latitude for [ilth missile.
Latitude = [x].
Can't be < -90 or > + 90 degrees.

RLAUNC Bad longitude for [ilth missile.
Longitude = [x].
Can t be < -180 or > + 180 degrees.

RLAUNC Bad elevation for [ilth missile.
Elevation (altitude) = [x].
Can't be < -10000 feet or > 30000 feet.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-11

MODULE MESSAGE

RLAUNC Bad flight letter for [ilth missile.
Flight letter = "Is]".
Must be A-Z.

RLAUNC Record [i] (silo (i]) has 1 error.

RLAUNC Record [i] (silo [i]) has [k] errors.

RLAUNC Launch Location File had 1 error.

RLAUNC Launch Location File had [i] errors.

RPBVFI Couldn't open PBV File!
File = "[s]".

RPBVFI Error reading PBV File!
File = "[s]".
Record number = [j]

RPBVFI End-of-file reading PBV File!
File = "Is]".
Record number = [j]

RRVFIL Couldn't open RV File!
File = "Is]".

RRVFIL Error reading RV File!
File = "Is]".
Record number = [j]

RRVFIL End-of-file reading RV File!
File = "[s]".
Record number = 6j1

RSSAFE Couldn't open Fratricide Constraint File!
Path = "[s]".
File ="t]"

RSSAFE Error reading Fratricide Constraint File's third record!
Path = Is]".
File = "[t]".

RSSAFE End-of-file reading Fratricide Constraint File's third record!
Path = "[s]".
File ="t]".

RSSAFE Bad yield in Fratricide Constraint File.
Yield = [x]
Path ="s]".
File = "It]".

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-12

MODULE MESSAGE

RSSAFE Unequal scaled heights-of-burst in Fratricide Constraint File!
SHOB1 = [x]
SHOB2 = ly]
Path = ".Is]".
File = "[t]".

RSSAFE Error reading Fratricide Constraint File's 6th record!
Path = "Is]".
File = "[t]".

RSSAFE End-of-file reading Fratricide Constraint File's 6th record!
Path = "[s]".
File ="[t]".

RSSAFE Bad sure-safe time in Fratricide Constraint File.
Yield =[x]
Path ="[s]".
File = "It]".

RSSAFE Did not find sure-safe time for [ith height-of-burst.Height-of-burst = [x] feet.

WSORTI Couldn't open Sortie File!

WSORTI Error writing Sortie File's 1st record.

WSORTI Error writing Sortie File record for Missile [i], RV [j].

FIGURE 7-2 ALM WARNING MESSAGES (Concluded)

7-13

MODULE MESSAGE

ALM ALM aborted.

ABRTRN ALM aborted!

RALLOC ALM aborted.

RBOOST ALM aborted.

RCNTRL ALM aborted.

RLAUNC ALM aborted.

RPBVFI ALM aborted.

RRVFIL ALM aborted.

WSORTI ALM aborted.

FIGURE 7-3 ALM ERROR MESSAGES

7-14

SECTION 8

SAMPLE PROBLEMS

The sample problem presented in this As a result of these choices, the

section demonstrates the development only input required to exercise this

and execution of a laydown case in which sample that cannot be specified during

the only function enabled is assignment. case definition is the characterization of
This example illustrates how the the missile system to be employed.

assignment function is used to generate When developing a laydown case, the

a timed laydown of ballistic missile user must specify the weapon system to
forces on a target set that fulfills an be employed, but the specification of the

input RV allocation and that satisfies missile model corresponding to that

missile system operational constraints, system, must have been previously

and user-specified targeting require- developed under the MPS "BUILD

ments and objectives. DATA SETS" option.

8.1 DESCRIPTION Figures 8-2 through 8-7 show the
The scenario implemented in this Man-Machine Interface (MMI) panels

laydown case is defined in Figure 8-1. In used to develop the missile data set for

an effort to keep this example as self the "US-3RV" missile system employed

contained as possible, the following in this example. The process begins by

input options were selected: selecting the "BUILD DATA SETS"

"s Time Between Layers.. A user- option on the MPS main menu.

specified, uniform (constant) time

between layers of 2.5 seconds was 8.2 INPUTS
prescribed. Specification of this Figures 8-8 through 8-13 show the

time obviates the need for one or MMI panels used to define the sample
more CAIN-produced, input laydown case. The process actually
Fratricide Constraints Files. begins by slecting the "DEFENSE

"* RV Allocation. A user-specified, TIMED LAYDOWN CASE" option on

uniform 2-on-1 attack was the MPS main menu shown earlier in

employed. Specification of this RV Figure 8-2. Up to Figure 8-10, the

allocation obviates the need for a panels are shown in the order they would
SOADA-produced, input RV Allo- appear when running the MPS. The

cation File. order in which the remaining panels

8-1

Missile System

No. of Missiles 6

No. of RVs/Missile 3

Launch Location Centroid 55°N, 80°E, 1000 ft elevation
Min. Time Between Launches 0. seconds

Minimum Exoatmospheric Spacing 90,000 ft.

Target Array

No. of DGZs 9

Target Location Centroid 48-N, -100°E, 3000 ft elevation

RV Allocation Uniform, 2 RVs/DGZ

Assignment Options

Time Between Layers User-specified, Uniform, 2.5 sec

Earth Model Rotating

Max. Fraction of PBV Fuel for
Range Extension .25

Reentry Angle 240

Attack Timing Objective Synchronize Arrival Times

RV Spacing Space a Minimum Distance

Height of Burst 2381.1 ft.

FIGURE 8-1 SCENARIO SPECIFICATION

8-2

0

0

e-4

u0

-z M

090

E4U) 0:

to -

Z E-0 41

oHo> wo 0

U~~0 0 -

U) 4 ~E-4I) E U) 4-) -4)e
F4~ 0H04 ~ -4

PZ M E-4 XIO
z z z = wH~ .,-I

Hx a H :iDH E-4x 0*'
0w rL A -4 >9. H

U)4 44 4 4) 0)

0 0

00
E-4

w -4
00

4) 4) 4 w)

8-3a

0
0-

0

.r
4

to

'I

co 0
0 E

IV
Z) z

0 ý

z >q E
H U))

C:4 X
CIOa) 1

U) 4-) M~ '44

4-4

00

HH
) E 4

H4 H

0) V)
Q0 M>-4r

E- 0- a)

zx w
E4 ~ E- X4:2C E-

4(E- ' M H

o~ >. >:. >4 WH

C., 0.) » :
ca~~ ~5 > -4 H H &

4)) 1.4

toN ..

o U)> ~~4 H E-4E.-

0

E-,
0

r-4

rz.

00

H E-4

E-4 m0
0 4:L

HE--

H/ I (A 0

** ** * .C - 4

0 1 0

00

9awI~ .0 r=:
00 E- I 0J1)

H- w~ H tog

1) 4)E
0 0l 140

H u x Irq%
rL4 N I I IAs0 4 - -

z 41 Ito to- 0W

o r-4
H~~~ to~E' W ~ '

1304 Iq~~ -

0
0-

0

000

000

1 ý44

zz
0

E-1 41) m
H un
z .40

E- Q-
0 Z0

0z~ E-4 0 >4 o4w
0o nEUz >4 &4 &4: >

(~cfl 0 rn H

&42E-4 4: 00 U4 z PC0. .

E-4 EO Z HE-4 4 : 0 U 3 a
0 z > 0 '4 H0 .

0 w % z In -1

W ~ ~ ~ E4. E-4: >r nt
V40049 00 E-4 0

i.H 00H
P44riq 04 E-4 M X *. '

S>4 >4 I
9 >4. 0490 c4 a

E4WOWW UH4 1-4H x 4
0 m~mmmCflH (JO I >

m zw 0 z) to 4 0) w
.' 0

oý C, .
H 'U 'i:

8-6

0
'-E-4

II 0

ý4-

z a

r- r- 00 00 4 0- ,-

0 (
o V

-000 0000 - 00 -
0 C0 0000 00.-0-
0 0 -4 00 0O-W0 0OO 0 -.

0 0 0 *.. .0 0 0eO fn
r-000 0000 r- Dr-in C
0 H co0 0000 cor, co (U

E-4-4 M1~ - I ' . E-4

z r
0 -4 I

E-4 * * z(

E-4 (A Cri _)

M- 0
0
04

0 0)

00 0 w4E4W 4 E#-E-4E- 0E-4

0c 4% 0

E-4 E- E-4-4

E-4U E-ii E-4-4 Z -

HHH uH H~(
r- >>>> >>>>4E - 0

4) 4

E4E-4E4-4 ~ 8-7

CE-4
0

00

44 4 (4- 44 4 4444-4

0 (

000 0
000 0000d~.4- 00-00.Q- WWW

0000 0000 0000 4)
N N N 0 N r- m0 D N - 0

. . .0 . . .0 .Q 00000 COLf) %0 0 %D o a,00
E-4~ LO~ LLfL %D W I1I -

Cl)
R >4
R x

0 r.4 I z
E-4 (a **4 *** *4 .

z z

C.)
U) 0

044
0 H E

E-4 0 0

00 U
00

0~ *OZ4 0
E- E-'E.E E--4-4- E-

r~i 0

H H H H r.0

E4 E- E4 E-4 0-4,w~~ 1- HH
0 x x x m o to

0 M9 NINNRH (H WW HHH >N X
x xHx0- Ooo

H wg ZZZZ 00

8-8

0
INI 10

0

4)-

01

010

000 00 0 0 0

000 000000 f-4~4q
0000~ 00 0 0

0000 00%0%0000 0 4
0000 00000 - LN

AC0000 0 - 'O'D .-w 40 0v
N %tAUL t r- r-4 II 1 E-i

CA,

>01

o -4 1 z
E-i .. *** *.

a 00

H4 44 o44 -
E4 N(E-4 E- E4

V)) ~ zrz 0/ 4&

0 0000 E-4

Cl) ~E4E4 E-4 0z H 0 -
Cz4 H 0- H.-

9999 0 E- 0 E-4 4
:D :ZZZ ::) 0D %d 0

OmH 0N
U) M WW E-4 H

w~I 01W -

0000 0E- O H.
0000 EZIE-He E-4 H 1

W ;E-4W0H0 Z I
E4 ~ ~ H .E-iz E-E-'zzI Z

H z z H

H >~E- E- 0 0a
0 ~z~z~z~*E~OZU) > M

8-9

41)

'-S x
oz

41) 0000000000
u H 0000000000 0
4) 4 0000000000E-

.4rZ 4 0000000000 0
W 0000000000 0

ca 00
4 $~4 '.4

0-4 0) rZ
0

'.4

E-4

CA,

__ z

E-4 -4z 0) 4<
w2

W 00
0 0 -

co4 0 0

E0-4
00~

04

o 4

0-1

0

0

0

>1H

*1.4 4)
H0 Ac

$4 90 4

0 0 0

E- (1 H441t
0C4 0 0a

H cn 0r.r4 Z
5.4 ý4

0 0 I

5415

U 0

to ~0 V --
H--

54 0)c

0g~

0 ~:I r.

z 22 r4 0e

z 00 4> x

H E-440

0, E-4

oE-4 H 44 rz4 >4 040 x

W Z01 0 0 W 5

Z E-4 wH Wwx 41

H > >> H z ~ w wz 41 to

8-11

N

N 0

0

0

2 U) 0

0~~~~ toQQ0 U UU C

0 0
o co
o0

0000 0000 0000 .
0000 0000 0000 *0. *-O%D 0000 00000
LO W. 0 0c0 0%000 r-4C

e~ OD~% Vw.. 000~~0 *Wl'0 N000 0 c

CIO * *** * . * *.*. x F

U) 0) 0

E4 r'-4<"go 0 0 -4
00 4)

z 0 *-4-
0 0 w

44H Wz 0 IH -4 0 N

0) OE- E-4 E-4
H 0 H ~ OH

E- U- E E-4 0 r-4

H E-4

E-4 U

W zE-4I HH E-4 2; 0tt
0 : E-4C) E-4C~ Z M I- -

0 o~ 4

r.l H W 4 4UE-4 :C S
44~~~~~ 0 - r)E4

0 to x .
E4U)X0Z E-4" uH~ '-

04

8-12

0

E-4

00

tou

0 CD0
00

000

000
0000
000
0 00

E-4. I E-4C

>~ 0

E-44
w~ r-4

E-4-0
4 H 0

E 4 Z 4

0~
0 0 in 0 0

E-4 E-4 0
zz~

E--4

II 0

con~r z
W~ W'-4-

0 ca

U2 E- I-

r--4 R 0

8-134

LO

V,

Nx
H

En

00O0O0OOO000 0
000000000000 E4

0)- 04.) 000000000000 0
mqa) 144 000000000000

z 0 0
0 Z 14 E-4 i-f _-H 4) Z _

E4

o CA

04

040
E-44

E-46-

1CO

4 >HIRE
4E- 0 4)r.4 00 0 0 0 I

0~04

co~
0 a

H>

HH

8-14

0

°

0

II 0000

ý'-

0V

4) 0000

z 4

4 - #

0Go

0000000000 0
r-4r-00O00000 N

%0 .(00 0 a 0 0
oqO4 *Cqo .00000

0'-4 N0O~ 00E-4

I I I

8->5

zz

W I

W r4 ., 4

H goJ 0 ix00 X

0> 00
rz4 r4 Q~4

0 0 0 H ,,

r41
u~E4 N

r-4i

lH w

4W8-15
... .-...

N 0

0

NI NNN

E-4 E~- E, -4~

44 4 4 44 44

00
&4 E-

zz

oE .0 0 00
0000 E-4*- E-0- Er

-C >

0- E-4 E-z- E44 4

0000 :: M E- 04
H 0 > o I
W 4- Wpa C H W, z t

tax E44x z 0 04H 0 g 4>4 4
H~ ~ 04) .

Q uU U to o i ov 04 -4 4Jwwwwo4E rz4 O wo $4z 0*
CI2UCJ2 Cz~I'~4 ~ H -I 0

~ 0E-' ~ ~ fa
IOr-4. 4

z4~zdr3rz8 16

00

'.44

oft

0 rz1
0 %

E-4
E- 0 00 0 0

0 ~ 000 000 000 0-

0~00
*'44

00 0 M
0

09

IV~ 0
>I A

4) (

12

ra8-17

E-4 E-4

zw
0) H

0 .. .0 0 00 0 .0

01 r

01)

~~.0

11 E-4
0 >0

404 000 00 0

00

UR '-I
03

~r-4
Ho 0

OF-4
r- 0o C)

U) 0~C

U8 0

appear depends on the order in which the Inspection of this figure reveals the

user addresses the following options in following:

Figure 8-10: "SPECIFY RUN 0 The input RV allocation has been

OPTIONS," "SPECIFY LAUNCH realized since every DGZ is

LOCATION DATA" and "SPECIFY RV targeted by 2 RVs.

ALLOCATION." Figures 8-11 through • Three unique sorties have been

8-15 reflect the panel order that results formed from the 9 DGZs, and each

when the user works through these sortie is executed by two missiles.

options from top to bottom in Figure 0 Launch times of first-layer missiles

8-10. (Missiles 1, 2 and 3) have been

adjusted so that the downtime of

8.3 EXECUTION RESULTS the first RV to arrive from each of

Figure 8-16 is the ALM Status File, these missiles is identical.

Figure 8-17 is the Attack File, and 0 One missilt is launched at the

Figure 8-18 is the Sortie File produced earliest possible launch time (t-0).

by the execution of this timed laydown 0 Launch times of second-layer

case. To interpret these files, the reader missiles (Missiles 4, 5 and 6) have

needs to consult the IOPTs provided in been adjusted so that the in-line

Figures 6-1 through 6-3. Alternatively, RV spacing is greater than or equal

the user has the option of producing up to to 2.5 seconds at all DGZs. Note,

three special reports from the output the intra-DGZ species is identically

Attack File (see Section 6.3). Figure 2.5 seconds for at least one DGZ

8-19 provides a description of the targeted by each second-layer

resultant timed laydown by missile. missile.

8-19

0
0-

0

r4-

94)

r.94
04 0

a 0

0. -4

0 r_0)t
H E-4_

H -4>.
z 00 to a)
H u~ M 4c

40 v1. t

44 144 40 v

94 cw 0 00 .4 94)0

'4.4 ~ ~ E- Cn4-4.

H a) a u ..
9- -4 zE-4 r -4

WE E-4 a).

U)nE E4U In r..

z 04) a) 0.

-WU 'fzI C4- Cn ZE4 W-4go 4d
0 N) wECz Q) EH 0 z nz A
0 U)0Z HWHO.4 Ow~

zoý w) ()
w IO01 H0aX 0.

UW rzEA4z Q E-4 9 I I A
H)cU)n WJ4 v '4

r-4 UU)U w 04 0c 0
4~) .C U

9U U
00i

8-20

0
E-
0

E'-4

>Z4

P0

0

0 4) z

E-44

W44 0

1~ E-4

U z x~

*>- w

z
H 4 H 1 4

ý44

U) Cf e4 J

0, 0

00

00
o 4

Ix 0
ul

04 (n

8-21

0

0

ý4 0

'CIO

14 4) 0)

u 4.) 4.J
'a

Q) 4-1a
"4-4 U

H 00

rz ~~ -"- 00>

0) 0)
E-4 -4-L

H 4-) a

E-4 0) r~

Z *.-4 N
0I 4 r_

H - 0).U
U) --4 H 0 z Z r-4~

C:) E-4 04 z H.

>4 >ý u (L 4)
(A r.4

N W H)U E- I

C-) w) W~ W!

U):

8-22

0
0

0
'-4

Iw 0

$4 Z

4J 04 f-4

to 4), goP

0~ ~ ~ 0 NE

00 €-- 0

00tN >1 -4Z

• . -• -r . >5.4 N 4to) 0 0
0UE >14 04

z z r

z W 0

9 w 0

00mE- ~-4 HW
a0 C II E 4

oo 0 0 0

.. • ~r.3• rc.1n

o 0)JCa w

8-4

,:1 4 I-4

z r.
00 0 r4

2 -e-. H 0 G

Ir 0 0C

U) ix0 0. I
Ci) w w a 0 (41

0I 4 cn * r z..ý
20

tv

.W- E E-4 P 4

.940. 24 9 Iw

C4~.- w CV(

00 w 0 Hr >

8-234

0
E-

0

oc

.9.4

0)

0 0
E- .14

0 0)

0 E-4 414 .(9

1 0.

Z E- 0

E- HOE E4r 4 o
H4 0

0z - 0 w 0

E-0 V
0 ': . *-4

'-) 4) E-4.
0 w .94 I _

co

8-244

0

rz 4 4

raw

1-4

4) z 0
4) E-4__ _ _ _

r-40

a) 0 a
U) 0 0

o 0
Iý4 0 rz.l

. * * * * *

000000 a)
Z E-4 V 000000 ,-i 4

H 44 f4 r-444 rlv4 rIA

S >41 0

z a)

00
H

E-44

U 0- 0000000000 a
MW no0om0oo000
E-4+ 00000O0000

> H

U)~V 0

I0I

~ r-=0000000000 r-4
+2 000000U0000 -r- a)

. .ý r. IV. ~
H- U0. U; 000 *-4 A4

4a) r-4

$ 4)
0 0

ca) a)>
IIm 0

r-4 FA 0 C
4)a4) 9) a) oU

8-25

0
0-

0

z
H. 4.4. 0
E-4'o- r- -4>

ý41
.90 en(n f-

Ha 0 00

a 4)

0 0
04
1-4 >. r V

e E-1 V . 4)

U r ,4 I
4 0 -

H N

F-4 0 4 I .

E-- 4 -4 >4 I4 - u4
IA.. OC goI U) 4

w44 > U

>)IU FA I4 E- F
W4 W~c MW 00

M H H E4 r44.
V- ::) a ~ H-

H ~ ~ I 0

04 Rz 4-1 :
E-4 E4 E4 E-4 1% W W.

w w4 = ~ = 0
0~ 0 0~ im

1- H: XH E-~4J ?A
w z r4 II

4- -4 2 l 4
00) 4)$4

r. VA
to tv
040u

8-26

S E-4 x

0~ e4

4) 0

0>0

4)
a.4 0

aca-
0~~ IE-

00M
0 #4

0x

00

>1>

0%0
*- -4

cz~~ ~ ~ rz..ooN N OO4

H w www .r-r

0~-. 0~O0IA0U~00 4

0~~ ~ t 00~0~0 ~ 0~

r- 0~4 M V rn %0 r 0D *.-4-4
II4 III 0 I

W 0

8-27I

4)"F-4.W

A ~ ~ -40$4$
4) V *"4400 $4

.0 $4
00 4)1~ 0iJi 4) '-r

$4 90 W PW r1.4 * 0 .,4 -

044 0) P~ 0- $4 ~ Q 4) 4 4-

$w4 $4 0 r. 4 C 4.C o-4 >1 >42
4)) 4 4. 0- 04J W 0 U -4 r-

.0 4 0 4.J' 4-) 4).J40 4)04 : 00

gUV0U) (o -~.4 0 QM 44

M a) -4 0 4 - 4 4J0J ý>4 4J00M
03 -1 0 -4 0J r-4 Q.-4 4) W r44 -'4 4) 0)~-4

F40 l " A r~.r4 ~ .0 4)rz 0 4 4) frz r
tv0 i4-) 4~4 4L) 0 : U0V

:3 tof4 . 4 -4r.0 r.0 0

r 0 4)W > 03 a(

U ~ ~ ~ 0~ 104 E - 040r4- jW-4O
Q)- -I-44 -4 4J -M - f 3 1 .

4.)J~ J c 4 8 4) r r4 -

0 4 0P 4 -lU ~ 4-Ier4 -4t 0 04..A

r. 0* 4) * 4-) r- -4 C* :. 0* >* **I **4 .*1
OO r- O 0 (D> 0 O > 4 - 000(r

U 4) '0 0 0'0 0V00'00-4-400(N 4

c R) t E) to o t tom R 8.-28

Northern, USA 3000.US-3RV 2381.1 238
.0 .7 .7 .0

1809.5 1820.6 11.2
3 55.050 80.050 .0
2 55.050 80.000 .2
1 55.050 79.950 .3
6 54.950 80.050 .5
5 54.950 80.000 .6
4 54.950 79.950 .7
1 1809.5 1 2 48.075-100.026 1 3 3 .0000
2 1809.6 2 2 48.075-100.000 1 2 3 .0000 .0000
3 1809.6 3 2 48.075 -99.974 1 1 3 .0000 .0000 .0000
4 1812.2 1 2 48.075-100.026 1 6 3 .0000 .0000 .0000
5 1812.2 2 2 48.075-100.000 1 5 3 .0000 .0000 .0000
6 1812.2 3 2 48.075 -99.974 1 4 3 .0000 .0000 .0000

.0000
7 1814.0 4 2 -48.000-100.026 1 3 2 .0000 .0000 .0000

.0000 .0000
8 1814.1 5 2 48.000-100.000 1 2 2 .0000 .0000 .0000

.0000 .0000 .0000
9 1814.1 6 2 48.000 -99.974 1 1 2 .0000 .0000 .0000

.0000 .0000 .0000 .0000
10 1816.7 4 2 48.000-100.026 1 6 2 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000
11 1816.7 5 2 48.000-100.000 1 5 2 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000
12 1816.7 6 2 48.000 -99.974 1 4 2 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000
13 1818.1 7 2 47.925-100.025 1 3 1 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
14 1818.1 8 2 47.925-100.000 1 2 1 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
15 1818.1 9 2 47.925 -99.975 1 1 1 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
16 1820.6 9 2 47.925 -99.975 1 4 1 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000
17 1820.6 7 2 47.925-100.025 1 6 1 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000
18 1820.6 8 2 47.925-100.000 1 5 1 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000

FIGURE 8.17 ATTACK FILE

8-29

L) -wv000L D%) V000L o%

:-rn r- r 0 0 0 NA N. N. N r- N 0 0 0 NA N0 N

0 o' o' a' 0 ; 0 0 0; a' 0'. 000000 ý ;

ý40000000a'00i000000

z III I I I I I I I I I~4 - r
LAOM~oomooommIOmm
0' 0- 0 0' 00 N' 0 0 0N 00 0'N 0 0ý 0N 0 0-

U)

Ss4J (NC' -I - N r ~ ~ NC 4 N (' -N N M- M M
Iý4

0

8-30

ATTACK DESCRIPTION BY MISSILE

Case = SAMPLE1 Missile System = US-3RV
Number of RVs = 18 Number of Missiles = 6

MISSILE LAUNCH TIME RV DGZ DOWNTIME LAYER

3 .0 3 1 1809.5 1
3 .0 2 4 1814.0 1
3 .0 1 7 17-8.1 1

2 .2 3 2 1809.6 1
2 .2 2 5 1814.1 1
2 .2 1 8 1818.1 1

1 .3 3 3 1809.6 1
1 .3 2 6 1814.1 1
1 .3 1 9 1818.1 1

6 .5 3 1 1812.2 2
6 .5 2 4 1816.7 2
6 .5 1 7 1820.6 2

5 .6 3 2 1812.2 2
5 .6 2 5 1816.7 2
5 .6 1 8 1820.6 2

4 .7 3 3 1812.2 2
4 .7 2 6 1816.7 2
4 .7 1 9 1820.6 2

FIGURE 8-19 ATTACK DESCRIPTION BY MISSILE

8-31

SECTION 9
COMPILING AND LINKING

9.1 COMPILING Each file is compiled (and the
The source code for the ALM CSC is resulting object files are linked) using a

contained in eight separate files, MAKE description file (ALM.MAK).
reflecting the CSC's overlay structure: See Chapter 14 "Automating Program

Development with MAKE" in Reference

ALMROOT.FOR ALMOVR2B.FOR 1. The MAKE description file is shown
ALMOVR1A.FOR ALMOVR2C.FOR in Figure 9-2. It invokes a second
ALMOVRIB.FOR ALMOVR2D.FOR MAKE description file (X.CMP) to
ALMOVR2A.FOR ALMOVR3.FOR compile each FORTRAN source file. The

one-statement file, X.CMP, is shown in
The FORTRAN source file Figure9-3.

containing each ALM module is listed in
Figure 9-1. The source file names are 9.2 LINKING
meant to indicate the overlay structure The LINK statement at the end of

of the program; i.e. a root plus three ALM.MAK invokes a response file,
overlays. Because the source files for shown in Figure 9-4. See Section 12.1.4
overlays 1 and 2 grew too big to be added "Linking with a Response File" in
conveniently, they were broken into Reference 3.
parts indicated by letters: e.g. 1A and

lB.

9-1

MODULE SOURCE FILE MODULE SOURCE FILE

ALM ALMROOT.FOR FXLYRS ALMOVR2C.FOR
ABRTRN ALMROOT.FOR GETSRT ALMOVR2C.FOR
ADDGZI ALMOVR2A.FOR GTBLY2 ALMOVR2C.FOR
ADDGZ2 ALMOVR2A.FOR GTBLYR ALMQVR2C.FOR
ADJST1 ALMOVR2A.FOR MOPUP ALMOVR2C.FOR
ADJST4 ALMOVR2A.FOR MOPUPA ALMOVR2C.FOR
ADJST5 ALMOVR2A.FOR MOPUPB ALMOVR2C.FOR
ADLAYR ALMOVR2A.FOR MOPUPO ALMOVR2C.FOR
ADXTRA ALMOVR2A.FOR MOVLFT ALMOVR2C.FOR
ASR2T2 ALMOVR2A.FQR MULSRT ALMOVR2C.FOR
ASR2TI ALMOVR2A.FOR ORDDGS ALMOVR2C.FOR
CHKMLT ALMOVR2A.FOR ORDMSS ALMOVR2C.FOR
CHKSRT CHKSRT.FOR PREPAR ALMOXTER3.FOR
CHKTMS ALMOVR2A.FOR RALLOC ALMOVR1A.FOR
CHKWST ALMOVR2A.FOR RBOOST ALMORVlA.FOR
CROSRT ALMOVR2B.FOR RCNTRL ALMOVR1A.FOR
OSTOUT ALMOVR2B.FOR IRPBVFI ALMOVR1B.FOR
CTRVS ALMO VR2B.FOR RRVFIL ALMOVRlB.FOR
CTUNIQ ALMOVR2B.FOR RSSAFE ALMOVRlB.FOR
OTUNUS ALMOVR2B.FOR SPLSRT ALMOVR2D.FOR
DPA'H'A ALMROOT.FOR SQIJEE2 ALMROOT.FOR
DPCNTR ALMROOT.FOR SQUEE3 ALMROOT.FOR
DPLC ALMRQOT.FOR SQUEEZ ALMOVR2D.FOR
DPOPSH ALMROOT.FOR SRTSR2 ALMOVR2D.FOR
DPSORT ALMROOT.FOR SRTSR3 ALMOVR2D.FOR
DPTI ALMROOT.FOR SRTSRT ALMOVR2D.FOR
DPWEAP ALMROOT.FOR STRSRT ALMOVR2D.FOR
DWNSRT ALMOVR2B.FOR SWPSRT ALMOVR2D.FOR
FMABAB ALMOVR2B.FOR SYNEZY ALMOVR2D.FOR
FMABBA ALMOVR2B.FOR SYNTIM ALMOVR2D.FOR
FNFRTH ALMOVR2B.FOR TRYFLY ALMOVR1B.FOR
FNHIGH ALMOVR2B.FOR UNDO ALMOVR2D.FOR
FNPREV ALMOVR2B.FOR UPRSRT ALMOVR2D.FOR
FNVRTS ALMOVR2B.FOR WSORTI ALMOXTER3.FOR

FIGURE 9-1 FORTRAN SOURCE FILES

9-2

'#ALM.MAK

ALMROOT. OBJ: ALMROOT. FOR
MAKE X=ALMROOT X.CMP

ALMOVRlA.OBJ: ALMOVRlA. FOR
MAKE X=ALMOVR1A X.CMP

ALMOVR1B.OBJ: ALMOVR1B. FOR
MAKE X=ALMOVR1B X.CMP

ALMOVR2A. OBJ: ALMO0VR2A. FOR
MAKE X=ALMO0VR2A X.CMP

ALMOVR2B.OBJ: ALMOVR2B. FOR
MAKE X=ALMOVR2 B X. CMP

ALMOVR2C.OBJ: ALMOVR2C. FOR
MAKE X=ALMO0VR2 C X. CMP

ALMOVR2D.OBJ: ALMOVR2D. FOR
MAKE X=ALMOVR2 D X. CMP

ALMOVER3.OBJ: ALM4OVER3 .FOR
MAKE X=ALMOVER3 X.CMP

ALM. EXE: ALMROOT.OBJ ALMOVR1A. OBJ ALMOVR1B.OBJ ALMOVR2A. OBJ\
ALMOVR2B.OBJ ALMOVR2C.OBJ ALMOVR2D. OBJ ALMOVER3 .OBJ\
\MPS\TARGET. LIB \MPS\MPS .LIB

LINK /E /F /PAC /SE:140 @ALM.LNK

FIGURE 9-2 MAKE DESCRIPTION FILE (ALM.MAK)

9-3

4J u

CD 0

M) +

N,

U) ~+
N 4

00
o, <
co+
'-40

C- 4 r -4

INI

(N 0

+

C14 > E-

X 0

~E-4
+N + 0e

E-4 W -
- rL4

xo
~4

(I)

9-4

SECTION 10
REFERENCES

1. Microsoft FORTRAN 4.1 Optimizing Compiler, Code View and Uti,,ties

Manual, Microsoft Corporation, 1987.

2. MPS Accessibility Computer Software Component - TARGET - Maintenance

Manual (MM-05), K-89-59U(R), Kaman Sciences Corporation, 16 January

1990.

3. MPS Support Software - UTILITIES - Maintenance Manual (MM-01),
K-89-55U (R), Kaman Sciences Corporation, 16 January 1990.

10-1

APPENDIX A
MODULE LIST

The module list, presented in this (indicated by an M in the Module Type

Appendix, identifies all modules used in column), a subroutine (indicated by an

the ALM CSC except for those TARGET S), or a function (indicated by an F).

CSD modules that are used by module Subroutines and functions in the MPS

CHKSRT to evaluate missile sortie Utilities Library, that are used by the

feasibility. The reader is refer-ed to ALM CSC, are indicated by an asterisk:

Reference 2 for a description of the see Reference 3 for detailed descriptions

TARGET modules used by CHKSRT. of these modules.

In this module list, modules are

identified as either the main program

MODULE MODULE DESCRIPTIONTYPE

ABRTRN S Aborts the run (writes warning message, dumps all

COMMON blocks, writes error message, and stops).

ADDGZ1 S Adds a DGZ from target island to the current sortie.

ADDGZ2 S Adds a DGZ from list of unique DGZs to the current
sortie.

ADJST1 S Adjusts launch times and downtimes for all layers beyond
the first.

ADJST4 S Adjusts a missile's launch time and its RVs' downtimes.

ADJST5 S Adjusts launch times and downtimes for all first-layer
missiles.

ADLAYR S Adds RVs from subsequent layers to DGZs in a sortie, to
use up a missile load.

ADXTRA S Adds extra RVs to most valuable DGZs in a sortie, to use
up a missile load.

ALM M Assigns RVs to DGZs and schedules missile launches.

ASR2T2 S Assigns RVs to DGZs in the target island.

ASR2TI S Prepares to aw-ign RVs, assigns RVs, adjusts launch
times and downtimes, and fixes layer numbers.

ATAN2D* F Computes the angle, in degrees, whose tangent is the
ratio of the two input arguments.

CDSTNC* S Computes the distance between two points in

3-dimensional space.

CHKMLT S Checks variations of a multi-layer sortie.

CHKSRT S Checks a sortie to see if a missile can successfully drop its
RVs on the DGZs in the sortie.

CHKTMS S Checks downtimes for all RVs in the current sortie that
go to the same DGZ.

CHKWST S Sees if current sortie wastes RVs.

CMEAN* F Computes the mean of an array of values.

CPCNTR* S Computes the centroid of a set of points in a plane.

CROSRT S Forms a crossrange sortie.

CSTOUT S Marks one of the DGZs in the current sortie as an outcast.

CTRVS S Counts the total number of RVs still to be assigned to
DGZs (that aren't outcasts).

ALM MODULE LIST

MODULE MODULE DESCRIPTION

TYPE

CTUNIQ S Counts unique DGZs in a sortie.

CTUNUS S Counts unused missiles in the launch complex.

DFTPCS* S Defines a tangent-plane coordinate system.

DPATTA S Dumps the contents of COMMON block /ATTACK/.

DPCNTR S Dumps the contents of COMMON blocks /CNTROL/ and/CSTRNG/.
DPLC S Dumps the contents of COMMON blocks /LC/ and

/LSTRNG/.

DPOPSH S Dumps the contents of COMMON block /OPSHNS/.

DPSORT S Dumps the contents of COMMON block /SORTIE/.

DPTI S Dumps the contents of COMMON blocks fr/ and
I/TSTRNG/.

DPWEAP S Dumps the contents of COMMON block /WEAPON/.

DWNSRT S Sorts a subset of the sortie lists so X-coordinates are in
downrange order.

FBRVAL* S Finds two values in an array that bracket a third value.

FCVPOL* S Finds the convex polygon enclosing a set of points.

FEXT* S Finds the extremes in an array of real values.

FMABAB S Forms a sortie that moves uprange, returns to the
beginning, and moves uprange again.

FMABBA S Forms a sortie that moves uprange, turns around, and
then moves downrange.

FMAX* S Finds the maximum in a set of real values.

FMIN* S Finds the minimum in a set of real values.

FNFRTH S Finds the DGZ in the current sortie that's furthest from
the sortie's mean Y-coordinate.

FNHIGH S Finds the highest layer number among all RVs attacking
the target island.

FNORM* F Forms the norm (resultant/magnitude) of a
3-dimensional vector.

FNPREV S- Finds the RV that hit a DGZ and was a member of the
previous layer.

ALM MODULE LIST (Continued)

MODULE MODULE DESCRIPTIONTYPE

FNVRTS S Finds the DGZs that are the vertices of a convex polygon
enclosing the target island.

FXLYRS S Fixes layer numbers for the sequence of RVs attacking
each DGZ.

GETSRT S Gets DGZs for a strict uprange sortie.

GTBLYR S Gets time between layers from list supplied in the
Control File.

GTBLY2 S Gets time between layers from list of sure-safe times read
from Fratricide Constraints files.

IFM[N* S Finds the minimum value in a list of integers.

INTRPL* F Linearly interpolates between (or extrapolates beyond)
two elements of a one-dimensional real array.

ISWAP* S Swaps two INTEGER*2 values.

MOPUP S Assigns RVs on remaining missile(s) to DGZs.

MOPUPA S Assigns RVs to DGZs that didn't get any RVs at all.

MOPUPB S Assigns RVs to DGZs in the sortie that was "short-
changed" the most.

MOPUPC S Assigns RVs to the most valuable sortie.

MOVLFT S Moves pointer to DGZ immediately to the left of the
leftmost DGZ in the current sortie.

MULSRT S Forms a multi-layer sortie from an uprange sortie by
reassigning one DGZ's RVs to other DGZs in the sortie.

ORDDGS S Orders DGZs; i.e. forms a list of pointers so DGZs can be
accessed from right to left.

ORDER* S Forms a list of pointers so an array of real numbers can be
accessed in ascending or descending order.

ORDMSS S Orders missiles; i.e. forms list of pointers that specifies
the order in which missiles should be used.

ORDNAL* F Returns suffix ("st", "nd", "rd", or "th") corresponding to
an integer.

PR1PNT* S Projects one point on the earth's surface onto a plane
tangent to the earth.

ALM MODULE LIST (Continued)

0

MODULE MODULE DESCRIPTIONTYPE

PRPNTS* S Projects a set of points on the earth's surface onto a plane

tangent to the earth.

PREPAR S Prepares data for the Attack File.

RALLOC S Reads RV Allocation File.

RBOOST S Reads Booster Data File.

RCNTRL S Reads Control File.

RLAUNC S Reads Launch Location File.

RMBLKS* S Removes all blanks from a string.

RMLEAD* S Removes leading blanks from a string.

RPBVFI S Reads PBV Data File.

RRVFIL S Reads RV Data File.

RSSAFE S Reads sure-safe time from each Fratricide Constraints
File.

SPLSRT S Splits sortie into two halves.

SQBLKS* S Squeezes multiple blanks in a string to single blanks.

SQUEEZ S Forms a list of unique DGZs in a sortie.

SQUEE2 S Squeezes multiple blanks from the message buffer and
then write a Status File Message.

SQUEE3 S Squeezes multiple blanks from the message buffer and
then displays message.

SRTSRT S Sorts a portion of each list of sortie data so X-coordinates
are in descending order.

SRTSR2 S Sorts a section of the sortie lists so integers in one of the
lists are in ascending order.

SRTSR3 S Sorts the sortie lists so DGZ values are in ascending
order.

STRSRT S Stores successful sortie data in arrays corresponding to
missile.

SWAP* S Swaps two real values.

SWPSRT S Swaps two sets of entries in the sortie lists.

SYNEZY S Synchronizes downtimes for RVs in the first layer, for the
easy situation where time between launches is zero.

ALM MODULE LIST (Continued)

MODULE MODULE
TYPE DESCRIPTION

SYNTIM S Synchronizes downtimes for RVs in the first layer.

TRULEN* F Finds the true length of a string (ignores trailing spaces
and, or nulls).

1TRYFLY S Tries to fly a missile from the silo closest to the target
island, so it drops all its RVs on the DGZ furthest from
the launch complex.

UNDO S Undoes a sortie that failed; i.e. resets launch time and
number of RVs assigned so far to their original values.

UPSRT S Sorts a subset of the sortie lists so X-coordinates are in
up-range order.

WATTCK* S Writes the Attack File.

WSORTI S Writes the Sortie File.

WRSFFR* S Writes the Status File's first record.

WRSFMS* S Writes a Status File message.

ALM MODULE LIST (Concluded)

APPENDIX B

MODULE CROSS-REFERENCE

This appendix provides a module cross- modules that call it and the modules it

reference. For each module in the ALM calls. Modules preceded by an asterisk

CSC, this cross reference identifies the are in the MPS Utilities Library.

MODULE CALLED BY CALLS TO

ABRTRN ADDGZI ADDGZ2 ADJSTI DPAI'TA DPCNTR DPLC DPOPSHI
ADLAYR ADXTRA FNPREV 1)PSORT DP`TI DPWEAP *WRSFMS
GETSRT GTBLYR MOPUP
NIOPLPC MOVLFT ORDMSS
PREPAR RSSAFE

ADDGZI ADLAYR ADXTRA GETSRT \LiRTRN SQUEE2 -WRSFMS
MNOPL:PA %IOPUPB %IOPUPC
%IU ISRT

ADDGZ2 FMABAB FMABBA ABRTRN SQUEE2 -WRSFMS

ADJSTI ASR2TI ABRTRN ADJST4 FNHIGH
FNPREV GTBLY2 GTBLYR
SQUEE2 *WRSFMS

ADJST4 ADJSTI ADJST5

ADJST5 SYNTIM ADJST4

ADLAYR GETSRT ABRTRN ADDOZI SQUEE2 *WRSFMS

ADXTRA GETSRT ABRTRN ADDGZI SQUEE2 SRTSR3
*WRSFMS

ALM -ASR2TI PREPAR RALLOC RBOOST
RCNTRL RLAL'NC RPBVFI RRVFIL
RSSAFE TRYFLY *WATTCK *WRSFMS
WSORTI

ASR2T2 ASR2TI CHKMLT CHKSRT CHKWST CROSRT
CSTOLJT CTRVS CTUNIQ DWNSRT
GETSRT MOPUP MOVLFT MULSRT
ORDNAI SPLSRT SQUEE3 STRSRT

UNDO LTPRSRT

ASR2TI ALM ADJSTI ASR2T2 FNVRTS FXLYRS
ORDDGS ORDMSS SYNTIM

CHKMLT ASR2T2 MOPUPA CHKSRT CHKTMS FMABAB FMABBA
SRTSRT

CHKSRT ASR2T2 CHKM LT MOPUPH (Modules are in TARGET Library)

I MOPLPC TRYFLY

CH-KTMS CfHKMLT GTBLYR

CHKWSTI ASR2T2

ALM MODULE CROSS REFERENCE

-MODULE CALLED BY CALLSTO,

CROSRT ASR2T2 *FNAX SWPSRT

CSTOLI' ASR2T2 -FNORM SQLEE2

CTRVS ASR2T2 GETSRT

CTUNIQ ASR2T2 GETSRT M\ILSRT-

CTUNUS MOPLP

DWNSRT ASR2T2 *F'MIN SWPSRT

FMABAB CHKMLT ADDGZ2 SQLEEZ

FMAB!IA CIIKMLT ADDGZ2 SQUEEZ

FNFRTII N1L:LSRT

FNHIGH ADJSTI

FNPREV ADJST1 ABRTRN SQUEE2 *WRSFMS

FNVRTS ASR2TI *FCVPOI. *PRPNTS

FXLYRS ASR2T[*ORDER

GETSRT ASR2T2 ABRTRN ADDGZI ADLAYR ADXTRA
CTRVS CTLNIQ SQUEE2 SRTSRT
*WRSFMS

GTBLY2 ADJSTI

GTBLYR ADJST1 CHKTMS ABRTRN SQUEE2 *WRSFMS

MOPLP ASR2T2 ABRTRN CTUNUS MOPUPA MOPUPB

MIOPUPC *WRSFMS

MOPU1PA MOPUP ADDGZI CHKMLT SRTSR3 SRTSRT
___ ___ __ ___ ___ ___ ___ ___STRSRT UN DO

MOPUPB MOPLP ADDGZI CHKSRT STRSRT UNDO

MOPUPC MOPLP ABRTRN ADDGZI CHKSRT STRSRT
___ ___ _ ___ ___ __ ___ ___ __UNDO *WRSFMS

MOVLFT ASR2T2 ABRTRN *FMIN SQUEE2 *WRSFMS

MULSRT ASR2T2 ADDOZI *CPCNTR CTUNIQ FNFRTH
SQUEEZ

ALM MODULE CROSS REFERENCE (Continued)

MODULE CALLED BY CALLS TO

ORDDGS ASR2TI *ORDER *PRP.NTS

ORDMSS ASR2TI ABRTRN IISWAP *ORDER *PLURAL
*PRPNTS *RMLEAD SQLEE2 *WRSFMtS

PREPAR ALM ABRTRN #FMI-N *ISWAP SQL EE2
*SWAP *WRSFMS

RALLOC ALM *CPCNTR *ORDNAL *PLURAL *RMLEAD

I *TRULEN *WRSFMS

RBOOST A LM SQUEE2 ITRULEN *WRSFMS

RCNTRL ALM *ORDNAL *RMBLKS *RMLEAD SQUEE2
*sum #WRSFFR *WRSFMS

RLAUNC ALM C\IEAN *CPCNTR *ORDNAL *PLURAL

*RMLEAD SQUEE2 *TRULEN *WRSFMS

RPBVFI ALM SQUEE2 #TRULEN *WRSFMS

RRVFIL ALM SQUEE2 *TRULEN *WRSFMS

RSSAFE ALM ABRTRN *ORDNAL SQUEE2 *TRULEN
*WRSFMS

SPLSRT ASR2T2 *CDSTNC *FEXT SRTSRT SWPSRT

SQUEE2 ADDGZI ADDGZ2 ADJSTi *SQBLKS *WRSF.MS
ADLAYR ADXTRA CSTOUT
FNPREV GETSRT GTBLYR
MOVLFT ORDMSS PREPAR
RALLOC RBOOST RCNTRL
RLAUNC RPBVFI RRVFIL

_______RSSAFE TRYFLY WSORTI _________________

SQUEE3 ASR2T2 *SQBLKS

SQUEEZ FMABAB FMABBA IfLULSRT SRTSRT

SRTSR2 SRTSRT IMN SPR

SRTSR3 ADXTRA MOPUPA SPR

SRTSRT CHKMLT GETSRT NIOPUPA SRTSR2 UPRSRT

STRSRT ASR2T2 MOPUPA MOPUPB-

ALM MODULE CROSS REFERENCE (Continued)

MODUL CALLED BY CALLS TO

SWPSRT CROSRT DWNSRT SPLSRT *ISWAP *SWAP
SRTSR2 SRTSR3 LPRSRT

SYNEZY SYNTIM ADJST4

SYNTIM ASR2TJ ADJST5 SYNEZY

TRYFLY A L.% CIIKSRT *FMAX *PRPNTS
____ ___ ___ ___ ___ ___ SqUEE2

UNDO ASR2T2 MOPUPA MOPUPB -

___ ___ MOPLVPC _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

UPRSRT ASR2T2 SRTSRT #FMAX SWPSRT

WSORTI ALM SQLEE2

ALM MODULE CROSS REF'ERENCE (Concluded)

APPENDIX C
MODULE DESCRIPTIONS

The module descriptions contained in contents of a COMMON block when the

this appendix are confined to those mod- ALM aborts (the string "xxxx" is usually

ules that are unique to the ALM CSC. the first four characters of the block's
Modules (subroutines and functions) name). Because each module consists

used in ALM that are part of the MPS only of print and format statements they

Utilities are described in Reference 3. are not described in detail.

Modules shared by the ALM and

TARGET CSCs are described in A special module, CHKSRT, is

Reference 2. described in this document, even though

the source code resides in the TARGET

A set of modules whose names have directory. CHKSRT is an interface

the form DPxxxx are NOT described in between the ALM and modules shared

this appendix. Each module dumps the by TARGET and ALM.

ALM

PROGRAM ALM

Purpose. To assign RVsto DGZs and to schedule missile launch times.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ASR2TI RRVFIL
PREPAR RSSAFE
RALLOC TRYFLY
RBOOST WATTCK (MPS Library)
RCNTRL WRSFMS (MPS Library)
RLAUNC WSORTI
RPBVFI

Calling Modules:

None

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

ATTAKK CBATTACK.FOR OPSHNS CBOPSHNS.FOR
CNTROL CBCNTROL.FOR SORTEE CBSORTIE.FOR
CSTRNG CBCSTRNG.FOR TI CBTI.FOR
LC CBLC.FOR TSTRNG CBTSTRNG.FOR
LSTRNG CBLSTRNG.FOR WEAPON CBWEAPON.FOR

ALM

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE statement.

Description:

Program ALM is the main driver for the MPS assignment function.
This program and its subroutines assign RVs to DGZs and schedule missile
launch times to generate a timed laydown. The program calls
subroutines to read the Control File, RV Allocation File, Launch Location
File, Booster Data File, PBV Data File, and RV Data File. Then the
program tries to fly the missile closest to the target island so that all its
RVs fall on the DGZ farthest from the launch complex. If the trial flight
fails, ALM stops. Otherwise, if the user has supplied the names of some
Fratricide Constraints Files, the program reads the sure-safe time from
each file to use as times between layers. Then the program calls the
major subroutine ASR2TI to assign RVs to the target island and schedule
launches. Next, ALM prepares data for the Attack File and writes the
file. Finally, the program writes the Sortie File and the success message
required for the Status File.

Source File:

ALMROOT.FOR

ABRTRN

SUBROUTINE ABRTRN

Purpose: To abort the run.

Input Arguments:

None

Output Arguments:

None

Modules Called:

DPATTA DPSORT
DPCNTR DPTI
DPLC DPWEAP
DPOPSH WRSFMS (MPS Library)

Calling Modules:

ADDGZ1 GTBLYR
ADDGZ2 MOPUP
ADJST1 MOPUPC
ADLAYR MOVLFT
ADXTRA ORDMSS
FNPREV PREPAR
GETSRT RSSAFE

Common Blocks Used:

None

File Input/Output:

None

ABRTRN

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ABRTRN writes a warning message to the Status File,
indicating the contents of all COMMON blocks will be written, as
information messages, in the Status File. ABRTRN then proceeds to do
exactly that. Finally, the subroutine writes the error message required
for the Status File and stops.

Source File:

ALMROOT.FOR

ADDGZ1

SUBROUTINE ADDGZ1 (IS, ID)

Purpose: To add a DGZ to the current sortie.

Input Arguments:

Variable Type Description

IS INTEGER*2 Sortie index; i.e., slot in which to store next
set of sortie data. Ranges from 1 through
number of RVs on a weapon.

ID INTEGER*2 Index of DGZ to add to sortie; ranges from 1
through number of DGZs in target island.

Output Argquments:

None

Modules Called:

ABRTRN
SQUEE2
WRSFMS (MPS Library)

Calling Modules:

ADLAYR MOPUPB
ADXTRA MOPUPC
GETSRT MULSRT
MOPUPA

ADDGZ1

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

OUTPUT CBOUTPUT.FOR TI CBTI.FOR
SORTEE CBSORTIE.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADDGZ1 first checks the sortie index. If it's bad, ADDGZ1
writes a warning message and then calls ABRTRN to abort the run. The
subroutine also checks the DGZ index and takes similar action if it's bad.
Otherwise, ADDGZ1 stores the DGZ index in the list of DGZ indices for
the sortie and increments the number of RVs assigned to the DGZ so far.
If the maximum number of layers is exceeded, ADDGZ1 writes a warning
message and calls ABRTRN to abort the run. If not, ADDGZ1 stores the
number of RVs in the list of layer numbers for the sortie. Finally,
ADDGZ1 stores the DGZ's latitude, longitude, X-coordinate, and
Y-coordinate in the appropriate sortie lists.

Source File:

ALOVR2A.FOR

ADDGZ2

SUBROUTINE ADDGZ2 (IS, IU)

Purpose: To add a DGZ, from the list of unique DGZs, to the current
sortie.

Input Arguments:

Variable Type Description

IS INTEGER*2 Sortie index; i.e., slot in which to store next
set of sortie data. Ranges from 1 through
number of RVs on a weapon.

IU INTEGER*2 Index for list of unique DGZs. Ranges from 1
through number of RVs per weapon.

Output Arguments:

None

Modules Called:

ABRTRN
SQUEE2
WRSFMS (MPS Library)

Calling Modules:

FMABAB
FMABBA

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

OUTPUT CBOUTPUT.FOR TI CBTI.FOR
SORTEE CBSORTIE.FOR WEAPON CBWEAPON.FOR

ADDGZ2

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADDGZ2 first checks the sortie index. If it's bad, ADDGZ2
writes a warning message and then calls ABRTRN to abort the run. The
subroutine also checks the unique DGZ index and takes similar action if
it's bad. Otherwise, ADDGZ2 gets values corresponding to the DGZ from
lists of unique DGZ data and stores the values in corresponding lists of
sortie data.

Source File:

ALMOVR2A.FOR

ADJST1

SUBROUTINE ADJST1

Purpose: To adjust launch times and downtimes for all layers beyond
the first.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN GTBLY2
ADJST4 GTBLYR
FNHIGH SQUEE2
FNPREV WRSFMS (MPS Library)

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR TI CBTI.FOR
LC CBLC.FOR WEAPON CBWEAPON.FOR
OUTPUT CBOUTPUT.FOR

File Input/Output'

None

ADJST1

FORTRAN 77 Exceptions:

1. Uses "i" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADJST1 first finds the highest layer number in the entire
attack. Then ADJST1 executes a loop over all layers from the second
through the highest.

At the beginning of each pass through the loop, ADJST1 forms the
number of the previous layer. If no CAIN models (Fratricide Constraints
Files) were read, ADJST1 gets the time between the previous and current
layers from the list on the Control File's last record. If the time between
launches is greater than this value, the time between launches is used
instead.

ADJST1 executes an inner loop over all missiles used. At the
beginning of each pass, ADJST1 checks to see if Fratricide Constraints
Files were read. If so, the time between the previous and current layers
is revised. Then, ADJST1 executes another inner loop, over the RVs on
the missile. ADJST1 computes the difference in downtimes between
each RV on the current missile, and the previous RV attacking the RV's
DGZ. The smallest difference is saved.

If the smallest difference is greater than the time between layers,
ADJST1 proceeds to the next missile. If not, ADJST1 adjusts the current
missile's launch time. If the time between launches isn't zero, ADJST1
also adjusts the launch times of every missile launched after the current
missile.

After examining all missiles used in each layer, ADJST1 returns.

ADJSTI

Source File:

ALMOVR2A.FOR

ADJST4

SUBROUTINE ADJST4 (AJSMNT, IM, NRVS)

Purpose: To adjust launch times and downtimes for one missile.

Input Arguments:

Variab!e Type Description

AJSMNT REAL*4 Delta-time to add to launch and
downtimes (seconds).

IM INTEGER*2 Missile index.
NRVS INTEGER*2 Number of RVs on missile.

Output Arguments:

None

Modules Called:

None

Calling Modules:

ADJST1
ADJST5

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR

File Input/Output:

None

ADJST4

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADJST4 first adds the adjustment to the missile's launch

time. Then it adds the adjustment to each RV's downtime.

Source File:

ALMOVR2A.FOR

ADJST5

SUBROUTINE ADJST5 (NRVS, LATEST)

Purpose: To adjust launch times and downtimes for all first-layer
missiles, when the time between launches is non-zero. The
objective is to minimize the span of downtimes.

Input Arguments:

Variable Type Description

NRVS INTEGER*2 Number of RVs on each missile.
LATEST REAL*4 Latest downtime (seconds) among all

first-layer RVs.

Output Arguments:

None

Modules Called:

ADJST4

Calling Modules:

SYNTIM

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
WEAPON CBWEAPON.FOR

File Input/Output:

None

ADJST5

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADJST5 minimizes the span of downtimes by matching
missiles with longer times-of-flight with earlier launch times, and
missiles with shorter times-of-flight with later launch times.

ADJST5 first examines each first-layer missile, storing the missile index
in one list and the launch time in another. The list of launch times is
sorted so launch times are in DESCENDING order. The list of missile
indices is sorted so the downtimes of th, first RV to arrive from each
missile are in ASCENDING order. Then ADJST5 executes a loop that
subtracts each missile's original launch time from, and adds the new
sorted laurch time to, the downtime of each RV on the missile. Finally,
ADJST5 replaces each missile's original launch time with the new sorted
launch time.

Source File:

ALMOVR2A.FOR

ADLAYR

SUBROUTINE ADLAYR (IS, NRVS)

Purpose: To add RVs from subsequent layers to DGZs in a sortie, to use
up a missile load.

Input Arguments:

Variable Type Description

IS INTEGER*2 Index for next entry in sortie data lists.
Must be greater than 1.

NRVS INTEGER*2 Number of RVs on missile performing
sortie.

Output Arguments:

Variable Type Description

IS INTEGER*2 Index for next entry in sortie data lists. The
input argument is incremented each time a
DGZ is added to the sortie.

Modules Called:

ABRTRN SQUEE2
ADDGZ1 WRSFMS

Calling Modules:

GETSRT

ADLAYR

Common Blocks Used:

Block $INCLUDE

OUTPUT CBOUTPUT.FOR
SORTEE CBSORTIE.FOR
TI CBTI.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADLAYR first checks the input argument IS. If it's less than
or equal to 1, or greater than the maximum number of RVs on a missile,
ADLAYR writes a warning message in the Status File. It also writes
information messages containing the bad sortie index and maximum
number of RVs per missile. Then ADLAYR calls ABRTRN to abort the run.

ADLAYR performs the same pair of checks on the input argument
NRVS. If it's bad, ADLAYR writes a similar sequence of Status File
messages and calls ABRTRN.

Otherwise, ADLAYR defines the start and stop indices for data
already in the sortie lists. The start index is simply 1, and the stop index
is IS-1. Then ADLAYR sets a second list index, a search index called JS,
equal to the start index, and zeros a counter of DGZs added to the lists.
ADLAYR loops through the DGZs already in the sortie, looking for one
that needs another RV. If no such DGZ is found, ADLAYR returns.

ADLAYR

But if such a DGZ exists, it's added to the sortie, the counter of DGZs
added is incremented, and the sortie index is incremented. If the sortie
is complete (i.e., if all RVs on the missile have been used), control returns
to GETSRT. Otherwise, the search index, JS, is incremented. If all of the
original DGZs in the sortie have been examined, and no DGZ was added,
control returns to GETSRT. Otherwise, the search index is reset to the
first original DGZ in the list and another pass is made. If there's still
another original DGZ in the current pass to examine, it's examined.

Source File:

ALMOVR2A.FOR

ADXTRA

SUBROUTINE ADXTRA (IS, NRVS)

Purpose: To add RVs to the most valuable DGZs in a sortie, to use up a
missile load.

Input Arguments:

Variable Type Description

IS INTEGER*2 Index for next entry in sortie data lists.
Must be greater than 1.

NRVS INTEGER*2 Number of RVs on missile performing
sortie.

Output Arguments:

Variable Type Description

IS INTEGER*2 Index for next entry in sortie data lists. The
input argument is incremented each time a
DGZ is added to the sortie.

Modules Called:

ABRTRN SRTSR3
ADDGZ1 WRSFMS
SQUEE2

Calling Modules:

GETSRT

ADXTRA

Common Blocks Used:

Block $INCLUDE

OUTPUT CBOUTPUT.FOR
SORTEE CBSORTIE.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADXTRA first checks the input argument IS. If it's less
than or equal to 1,or greater than the maximum number of RVs on a
missile, ADXTRA writes a warning message in the Status File. It also
writes information messages containing the bad sortie index and
maximum number of RVs per missile. Then ADXTRA calls ABRTRN to
abort the run.

ADXTRA performs the same pair of checks on the input argument
NRVS. If it's bad, ADXTRA writes a similar sequence of Status File
messages and calls ABRTRN.

Otherwise, ADXTRA defines the start index for data already in the
sortie lists. The start index is IS-1, because DGZs in the sortie will be
selected in reverse order. Then ADXTRA sorts the sortie lists so DGZ
values are in ascending order.

Next, ADXTRA sets a second list index, JS, equal to the start index.
ADXTRA loops backwards through the DGZs already in the sortie, from

ADXTRA

most to least valuable, adding each DGZ to the sortie. If the sortie is
complete (i.e., if all RVs on the missile have been used), control returns
to GETSRT. Otherwise, the second index, JS, is incremented. If all of the
original DGZs in the sortie have been examined, JS is reset to the start of
the sorted lists and another pass is made. If there's still another original
DGZ in the current pass to examine, it's examined.

Source File:

ALMOVR2A.FOR

ASR2T2

SUBROUTINE ASR2T2

Purpose: To form sorties for each missile that should be used.

Input Arguments:

None

Output Arguments:

None

Modules Called:

CHKMLT CROSRT CTUNIQ MOPUP ORDNAL STRSRT
CHKSRT CSTOUT DWNSRT OMVLFT SPLSRT UNDO
CHKWST CTRVS GETSRT MULSRT SQUEE3 UPRSRT

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR SORTEE CBSORTIE.FOR
OPSHNS CBOPSHNS TI CBTI.FOR
OUTPUT CBOUTPUT.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

ASR2T2

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ASR2T2 begins by defining three variables: half the num-
ber of RVs on a missile; an INTEGER*2 representation of the number of
DGZs in a sortie (equals the number of RVs on a missile); and an
INTEGER*4 version of the same value (for subroutine CHKSRT). ASR2T2
also sets a pointer to the ordered list of DGZ indices to 1, and a pointer
to the ordered list of missile indices to 1. Because ASR2T2 is long and
complicated, the remainder of the description is keyed to statement
numbers in the source code.

(10) ASR2T2 begins a loop over all the missiles to be used by getting a
missile index from the ordered list, and displaying a message on the
screen indicating the current sortie.

(15) ASR2T2 calls subroutine CTRVS to count the DGZs that aren't out-
casts and which still need at least one more RV. If more than half a
missile load is required, ASR2T2 goes to statement 17. If not, ASR2T2
examines the DGZ pointer. If it's 1, meaning the current DGZ is the
rightmost DGZ, ASR2T2 goes to statement 80, to mop up. Otherwise,
ASR2T2 resets the DGZ pointer to 1 and goes back to statement 15.

(17) ASR2T2 calls subroutine GETSRT to get an uprange sortie. The
height of burst (HOB) for the first DGZ in the sortie is defined to be the
HOB for all DGZs in the sortie. The launch time for the missile per-
forming the sortie is computed by adding time between launches to the
previous launch time. If the number of unique DGZs in the sortie is less
than the number of DGZs in the sortie, the sortie is a multi-layer sortie;
i.e. at least one DGZ in the sortie gets more than one RV. ASR2T2 goes
to statement 30 to check the multi-layer sortie.

ASR2T2

Otherwise, ASR2T2 calls CHKSRT to see if the missile can do the up-
range (single-layer) sortie. If so, ASR2T2 goes to statement 60 to save
the successful sortie data. If not, ASR2T2 displays a message indicating
the uprange sortie failed and calls SPLSRT to form a "split sortie".

ASR2T2 cAlls CHKSRT again to see if the missile can do the split sortie.
If so, ASR2T2 goes to statement 60 to save the successful sortie data. If
not, ASR2T2 displays a message indicating the split sortie failed and calls
CROSRT to form a crossrange sortie.

ASR2T2 calls CHKSRT again to see if the missile can do the crossrange
sortie. If so, ASR2T2 goes to statement 60 to save the successful sortie
data. If not, ASR2T2 displays a message indicating the crossrange sortie
failed and calls DWNSRT to form a downrange sortie.

ASR2T2 calls CHKSRT again to see if the missile can do the down-
range sortie. If so, ASR2T2 goes to statement 60 to save the successful
sortie data. If not, ASR2T2 displays a message indicating the down-
range sortie failed and calls UPRSRT to form an uprange sortie again.

(25) ASR2T2 calls MULSRT to form a multi-layer sortie; i.e., one of the
DGZs in the current sortie is eliminated and its RVs reassigned to the
other DGZs in the sortie. Therefore, at least one of the remaining DGZs
gets more than one RV. The DGZ eliminated is the one furthest from the
sortie's uprange/downrange axis.

(30) ASR2T2 calls CHKMLT to see if the missile can do the current
multi-layer sortie. If so, ASR2T2 goes to statement 40 to see if the sortie
is wasteful. If the missile can't do the sortie, ASR2T2 calls CTUNIQ to
count the number of unique DGZs in the sortie. If there are more than
two, ASR2T2 goes back to statement 25 to form a new multi- layer sortie
by eliminating yet another DGZ. If there are only two DGZs in the sortie,
ASR2T2 goes to statement 50 to make one of them an outcast.

(40) ASR2T2 calls CHKWST to see if the sortie just formed is wasteful;
i.e., if more than half the RVs deployed are more than their respective

ASR2T2

DGZs should get. If the sortie isn't wasteful, ASR2T2 goes to statement
60 to save the sortie data.

(50) ASR2T2 calls CSTOUT to cast out one of the DGZs in the current
sortie. The DGZ furthest from the target island's centroid becomes the
outcast. Then ASR2T2 calls UNDO to undo the sortie; i.e. to decrement
the number of RVs assigned so far to the DGZs in the sortie and to reset
the previous launch time to its former value. ASR2T2 goes back to
statement 15 to recount the number of DGZs that need RVs.

(60) ASR2T2 calls STRSRT to store the sortie lists in arrays, and displays
a message that a sortie has been formed. ASR2T2 increments the poin-
ter to the list of missile indices. If all missiles have been used, ASR2T2
goes to statement 90 to return. Otherwise, ASR2T2 calls MOVLFT to
move the DGZ pointer. It's moved to the DGZ immediately to the left of
the leftmost DGZ in the current sortie. Then ASR2T2 goes to statement
10 to get the index of the next missile to use.

(80) ASR2T2 calls MOPUP to use any leftover -nissile(s), and displays a
message indicating that fact.

(90) ASR2T2 returns control to ASR2TI.

Source File:

ALMOVR2A.FOR

ASR2TI

SUBROUTINE ASR2TI

Purpose: To assign RVs to DGZs and schedule launches.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADJST1 FXLYRS SYNTIM
ASR2T2 ORDDGS
FNVRTS ORDMSS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
OPSHNS CBOPSHNS.FOR
TI CBTI.FOR

File Input/Output:

None

ASR2TI

FORTRAN 77 Exceptions:

1. Uses "i' typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ASR2TI begins by zeroing the number of RVs assigned so
far to each DGZ in the target island. It also sets a flag associated with
each DGZ to .FALSE., indicating no DGZ is an outcast (yet).

ASR2TI calls FNVRTS to find which DGZs are the vertices of a convex
polygon enclosing the target island. It displays a message stating it has
done so.

ASR2TI sets the downtime for each RV on each missile to an absurd
value (-1.0).

ASR2TI calls ORDDGS to form an ordered list of DGZ indices. DGZs are
ordered from right to left; i.e., so their Y-coordinates are in descending
order. ASR2TI calls ORDMSS to form an ordered list of missile indices.
Missiles are used in horizontal strips, from the front of the launch com-
plex to the back. Within each strip, missiles are used from right to left.

ASR2TI calls ASR2T2 to form a sortie for each missile that should be
used. If RV downtimes for the first layer should be "synchronized"
ASR2TI calls SYNTIM to do just that. Note that downtimes can be truly
synchronized only if the time between launches is zero; if it's non-zero,
the best that can be done is to minimize the span of downtimes.

ASR2TI calls ADJST1 to adjust launch times and downtimes for sub-
sequent layers. It calls FXLYRS to fix layer numbers within each string of
RVs going to the same DGZ. It's possible for the downtime of an RV in a
given layer to be earlier than the downtime of an RV in the previous
layer! FXLYRS ensures that the layer numbers and downtimes for each

ASR2TI

string of RVs are both ascending sequences. Then ASR2TI returns control
to ALM.

Source File:

ALMOVR2A.FOR

CHKMLT

SUBROUTINE CHKMLT (JM, NDPLYD, BTNEW, PNEW, TOFNEW)

Purpose: To check variations of a multi-layer waik.

Input Arguments:

Variable Type Description

JM INTEGER*2 Missile number (within launch complex).

Output Arguments:

Variable Type Description

NDPLYD INTEGER*2 Number of RVs deployed. ;f NDPLYD equals
number of RVs on missile, missile can do
multilayer sortie.

BTNEW REAL*4 New burn-time (seconds) to use for next
sortie. Defined only if sortie was successful.

PNEW REAL*4 New pitch (degrees).
TOFNEW REAL*4 New time-of-flight (seconds).

Modules Called:

CHKSRT FMABBA
CHKTMS SRTSRT
FMABAB

Calling Modules:

ASR2T2
MOPUPA

CHKMLT

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR TI CBTI.FOR
OPSHNS CBOPSHNS.FOR WEAPON CBWEAPON.FOR
SORTEE CBSORTIE.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*' typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CHKMLT begins by calling subroutine SRTSRT to form an
uprange walk. Then CHKMLT prepares the input arguments needed to
call subroutine CHKSRT and calls it. If the sortie fails, CHKMLT returns
control to the calling module.

If the sortie is successful, however, CHKMLT calls CHKTMS to check
the downtimes for each string of RVs that goes to the same DGZ. If the
absolute value of the difference between each successive pair of
downtimes is greater than or equal to the time between layers, the
times are good, and control returns to the calling module.

If the times are bad, CHKMLT calls FMABAB to form a sortie that
moves uprange, backs up to the beginning, and moves uprange again.
Then CHKMLT calls CHKSRT to see if the missile can do the sortie. If so,
control returns to the calling module.

CHKMLT

If not, CHKMLT calls FMABBA to form a sortie that moves uprange,
then turns around and moves downrange. CHKIVILT calls CHKSRT again
to see if the missile can do this sortie. if so, control returns to the calling
module.

If not, CHKMLT forms the uprange sortie it formed at the beginning,
sets the number of RVs deployed equal to the number of RVs on a
missile, and returns.

Source File:

ALMOVR2A.FOR

CHKSRT

SUBROUTINE CHKSRT (LEARTH, RXFUEL, LSPACE, SLAT, SLON, ELEVL,
NPTS, APLAT, APLON, ELEVT, HOB1, IWALK,
GAMMA1, TLNCH, BTIN, PIN, TOFIN, IWPN,
WDATA, IWDATA, NDOWN, TDOWN, BTNEW,
PNEW, TOFNEW)

Purpose: To assess a missile sortie's feasibility by simulating a missile's
flight and determining if the sortie is within the missile's
performance capability. This subroutine determines: (1)
whether the missile can reach the first DGZ in the sortie, at
the desired reentry angle, given the maximum booster burn
time and the maximum allowable PBV propellant for range
extension; and (2) whether the PBV can target all of its RVs,
to their assigned DGZs, within the available PBV propellant
load.

Input Arguments:

Variable Type Description

LEARTH LOGICAL*1 Flag: if. TRUE., rotating earth should
be used.

RXFUEL REAL*4 Maximum fraction of fuel to use for
range extension.

LSPACE LOGICAL*1 Flag: if .TRUE., RVS should be spaced
at least a certain minimum distance
apart at an altitude specific to each
type of missile.

SLAT REAL*4 Latitude from which missile is
launched, in degrees (+ North/-South).

SLON REAL*4 Longitude from which missile is
launched, in degrees (+ East/-West).

ELEVL REAL*4 Altitude from which missile is
launched, in feet.

NPTS INTEGER*4 Number of DGZs in sortie.

CHKSRT

APLAT REAL*4 Array: latitude of each DGZ in the
sortie, in degrees (+ North/-South).

APLON REAL*4 Array: longitude of each DGZ in the
sortie, in degrees (+ East/-West).

ELEVT REAL*4 Target island's elevation (altitude) in
feet above mean sea level.

HOB1 REAL*4 Height of burst for every DGZ in the
sortie, in feet. First DGZ's height of
burst is used for all DGZs.

IWALK INTEGER*4 Sortie type: 0 = One PBV; 1 = Two or
more PBVs.

GAMMA1 REAL*4 Reentry angle for first RV, in degrees.
TLNCH REAL*4 Launch time in seconds.
BTIN REAL*4 Burntime in seconds.
PIN REAL*4 Booster pitch in degrees.
TOFIN REAL*4 Time-of-flight in seconds.
IWPN INTEGER*4 Weapon type indicator.
WDATA REAL*4 Array: contains real weapon data.
IWDATA INTEGER*4 Array: contains integer weapon data.

Output Arguments:

Variable Type Description

NDOWN INTEGER*2 Number of RVs deployed. If NDOWN
equals number of RVs on missile,
missile can do sortie.

TDOWN REAL*4 Array: downtime for each RV in the
sortie, in seconds.

BTNEW REAL*4 New burn time (seconds) to use for
next sortie. Defined only if sortie was

successful.
PNEW REAL*4 New pitch (degrees).
TOFNEW REAL*4 New time-of-flight (seconds).

CHKSRT

Modules Called:

All modules called by CHKSRT are in the TARGET CSC's library
(TARGET.LIB).

Calling Modules:

ASR2T2 MOPUPC
CHKMLT TRYFLY
MOPUPB

Common Blocks Used:

None

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

CHKSRT is used to interface between the modules of the TARGET CSC
that are used by the ALM CSC and the -alling module in the ALM. A
subset of the TARGET subroutines is usea by the ALM to CHecK SoRTie
feasibility when generating attack laydowns. Since sortie feasibility
assessment is an option of TARGET when it is executed autonomously,
that software can be used by ALM for the same purpose.

The first time that CHKSRT is called during an ALM run, it begins by
reassigning the missile data set (MDS) information for the booster, PBV
and RV, contained in the arrays WDATA and IWDATA, to working

CHKSRT

variables compatible with TARGET. Note that in order to keep the
interface between ALM and TARGET as simple as possible, all MDS
information is read by subroutines RBOOST, RPBVFI and RRVFIL, with the
real variables being stored in WDATA and the integer variables in
IWDATA. This reassignment is performed only for the first call to
CHKSRT since the MDS information will remain the same (single weapon
type used).

Processing continues with the targeting of the booster to the first
DGZ in the sortie at either a prescribed reentry angle (passed in via
GAMMA1) or at minimum energy (GAMMA1 equals zero). If the first
DGZ is accessible by the booster or if it is accessible via range extension,
then RVs are deployed to the remaining DGZs in the sortie. If the sortie
is feasible (i.e., all RVs can be deployed successfully to their prescribed
DGZs), CHKSRT saves the downtimes and sets the number of RVs
successfully deployed (NDOWN) equal to the number of RVs on board
the missile before exiting. However, if the sortie is infeasible, then one
of the following three steps is taken: a) If range extension is required to
reach the first DGZ and the sortie still cannot be completed, then
NDOWN is set to -1; b) if the first DGZ is out of range even with range
extension, then NDOWN is set to -2; and c) if the first DGZ is less than the
minimum range capability of the booster, then NDOWN is set to -3.

Source File:

CHKSRT.FOR

(Please note that CHKSRT.FOR resides in the TARGET directory, and

that CHKSRT.OBJ is stored in the library \TARGET\TARGET.LIB)

CHKTMS

SUBROUTINE CHKTMS (GOOD)

Purpose: To check downtimes for RVs in the current sortie that go to
the same DGZ. If the absolute value of the difference
between successive downtimes at each DGZ is greater than or
equal to the time between layers, downtimes are considered
"good"

Input Arguments:

None

Output Arguments:

Variable Type Description

GOOD LOGICAL* 1 Flag: if .TRUE., downtimes are good.

Modules Called:

GTBLYR

Calling Modules:

CHKMLT

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTRO.FOR SORTEE CBSORTIE.FOR
OPSHNS CBOPSHNS.FOR TI CBTI.FOR

CHKTMS

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CHKTMS first sets the logical flag GOOD to .TRUE.; i.e.,
CHKTMS assumes the times will be good and will try to prove otherwise.
Then it begins an outer loop that examines each RV except the last.
CHKSRT next begins an inner loop that examines each successor to the
RV currently selected in the outer loop. If the RVs go to different DGZs,
no further checking is done; CHKSRT proceeds to the next successor, if
there is one.

If the RVs do go to the same DGZ, CHKSRT gets the layer numbers
associated with the RVs from a list. If the second RV's layer number is
less than the first RV's, the two layer numbers are swapped. This step is
necessary when last-off-first-in missile systems are used.

If Fratricide Constraints Files ("models") aren't being used, then the
operator has supplied a list of times between layers on the Control File's
last record. The required time between layers is computed by summing
up values in that list, from the first RV's layer up to, but not including the
second RV's layer. If Fratricide Constraints Files ARE being used, the
required time between layers is computed: the difference between the
first and second RV's layers is multiplied by the sure-safe time
corresponding to the first RV's height of burst.

CHKTMS computes the absolute value of the difference between the
two RVs' downtimes. If that value is less than the required time
between layers, the flag GOOD is set to .FALSE. and control returns to

CHKTMS

CHKMLT. Otherwise, CHKTMS proceeds to the next RV in the inner or
outer loop. If all times are good, control returns to CHKMLT with GOOD
still set to .TRUE.

Source File:

ALMOVR2A.FOR

CHKWST

SUBROUTINE CHKWST (WSTFUL)

Purpose: To see if the current sortie is "wasteful". A sortie is wasteful
if more than half the RVs are excess RVs. An excess RV is one
assigned to a DGZ that's already received its quota of RVs.

Input Arguments:

None

Output Arguments:

Variable Type Description

WSTFUL LOGICAL* 1 Flag: if.TRUE., the sortie is wasteful.

Modules Called:

None

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR
TI CBTI.FOR

File Input/Output:

None

CHKWST

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CHKWST first zeros a counter of excess RVs. Then it
examines the layer number of each RV in the sortie. If a layer number is
greater than the number of RVs the associated DGZ was supposed to
get, the counter of excess PVs is incremented. Then if the counter is -

greater than half the number of RVs on the missile, the flag WSTFUL is
set to .TRUE.: if not, it's set to FALSE. Then CHKWST returns control to
ASR2T2.

Source File:

ALMOVR2A.FOR

CROSRT

SUBROUTINE CROSRT

Purpose: To form a crossrange sortie.

Input Arguments:

None

Output Arguments:

None

Modules Called:

FMAX
SWPSRT

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

CROSRT

Description:

Subroutine CROSRT simply sorts the lists of sortie data so the Y-
coordinates are in descending (right-to-left) order. See Figure 5-13 and
the example below. The result is a missile sortie that targets DGZs in the
crossrange direction from right to left.

Source File:

ALMOVR2B.FOR

Example:

IATlTACK DIRECTION

CROSSRANGE SORTIE

CSTOUT

SUBROUTINE CSTOUT (NDGSRT, DGZSRT)

Purpose: To mark one of the DGZs in the current sortie as an outcast;
i.e., to indicate the DGZ should be ignored from now on as
permanently unreachable.

Input Arguments:

Variable Type Description

NDGSRT INTEGER*2 Number of DGZs (and RVs) in current

sortie.
DGZSRT INTEGER*2 Array containing indices for each DGZ in

the sortie.

Output Arguments:

None

Modules Called:

FNORM

SQUEE2

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

OUTPUT CBOUTPUT.FOR
TI CBTI.FOR

CSTOUT

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CSTOUT looks for the DGZ in the current sortie that's
furthest from the target island's centroid. Since the centroid is the
origin of the tangent-plane coordinate system, computing distances is
easy. CSTOUT also looks for DGZs in the current sortie that are vertices
of the convex polygon enclosing the target island, and looks for the
furthest one of them too. If CSTOUT finds one or more DGZs that are
vertices, the furthest one of them is cast out. If none of the DGZs in the
sortie is a vertex, then the ordinary DGZ that's furthest from the centroid
is cast out.

Source File:

ALMOVR2B.FOR

CTRVS

SUBROUTINE CTRVS (IDSTRT, NEEDED)

Purpose: To count the total number of RVs that still must be assigned
to a subset of the target island. The subset consists of all
DGZs to the le" of, and including, the starting DGZ.

Input Arguments:

Variable Type Description

IDSTRT INTEGER*2 Pointer to list of sorted DGZ indices.
Indicates where to start.

Output Arguments:

Variable Type Description

NEEDED INTEGER*2 Number of RVs needed.

Modules Called:

None

Calling Modules:

ASR2T2
GETSRT

Common Blocks Used:

Block $INCLUDE

TI CBTI.FOR

CTRVS

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CTRVS zeros the counter of RVs needed and executes a
loop that examines DGZs. Outcasts are ignored. For each DGZ, CTRVS
subtracts the number of RVs assigned so far from the number of RVs
allocated to the DGZ in the input RV Allocation File. If the difference is
greater than zero, it's added to the counter of RVs needed. Then CTRVS
returns control to ASR2T2 or GETSRT.

Source File:

ALMOVR2B.FOR

CTUNIQ

SUBROUTINE CTUNIQ (NDGZS, DGZSRT, NUNEEK)

Purpose: To count the number of unique DGZs in a sortie.

Input Arguments:

Variable Type Description

NDGZS INTEGER*2 The number of DGZs in the sortie.
DGZSRT INTEGER*2 Array: contains the index of each DGZ in

the sortie.

Output Arguments:

Variable Type Description

NUNEEK INTEGER*2 Number of unique DGZs.

Modules Called:

None

Calling Modules:

ASR2T2
GETSRT
MULSRT

Common Blocks Used:

None

File Input/Output:

None

CTUNIQ

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CTUNIQ initially defines the number of unique DGZs in
the sortie to be one. Then CTUNIQ executes a loop that ranges from the
second through the last DGZ in the sortie. During each pass, CTUNIQ
sees if the current DGZ appears earlier in the sortie. If so, the DGZ isn't
unique and CTUNIQ proceeds to the next DGZ. But if the DGZ is unique,
the number of unique DGZs in incremented. Then CTUNIQ returns
control to the calling module.

Source File:

ALMOVR2B.FOR

CTUNUS

SUBROUTINE CTUNUS (NUNUSD)

Purpose: To count the number of unused missiles in the launch
complex.

Input Arguments:

None

Output Arguments:

Variable Type Description

NUNUSD INTEGER*2 Number of unused missiles.

Modules Called:

None

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR

File Input/Output:

None

CTUNUS

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CTUNUS initially defines the number of unused missiles to
be zer.,. Then CTUNUS executes a loop that ranges from one through
the number of missiles it's supposed to use. During each pass, CTUNUS
examines a flag associated with each missile that indicates whether or
not the missile has been used yet. If the flag is. FALSE., meaning the
missile hasn't been used yet, the number of unused missiles is
incremented. Then CTUNUS returns control to the calling module.

Source File:

ALMOVR2B.FOR

DWNSRT

SUBROUTINE DWNSRT (FIRST, LAST)

Purpose: To form a downrange sortie from a subset of the current
sortie.

Input Arguments:

Variable Type Description

FIRST INTEGER*2 Index for first DGZ in sortie lists.
LAST INTEGER*2 Index for last DGZ in sortie lists.

Output Arguments:

None

Modules Called:

FMIN
SWPSRT

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

DWNSRT

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine DWNSRT simply sorts the specified sublists of sortie data
so the X-coordinates are in ascending (downrange) order. See
Figure 5-13 and the figure below. The result is a missile sortie that
targets DGZs in the downrange direction.

Source File:

ALMOVR2B.FOR

Example:

/ ATTACK DIRECTION

DOWNRANGE SORTIE

FMABAB

SUBROUTINE FMABAB

Purpose: To form a sortie that moves uprange, returns to the
beginning, and moves uprange again.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ2
SQUEEZ

Calling Modules:

CHMKM LT

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

FMABAB

Description:

Subroutine FMABAB calls subroutine SQUEEZ to form a list of unique
DGZ numbers, a list of the number of times each DGZ appears in the
sortie, and a list of the starting layer number for each DGZ. Then
FMABAB prepares the index used to form a new sortie: the index is set
to one

FMABAB begins a loop that ranges over the list of unique DGZs.
During each pass, FMABAB sees if the number of times the DGZ appears
in the sortie is greater than zero. if so, the DGZ is added to the sortie by
calling subroutine ADDGZ2 and the sortie index is incremented. The
number of times the DGZ appears in the input sortie is decremented. If
the sortie is completed during a pass through the loop, control is
returned to CHKMLT. Otherwise, FMABAB proceeds to the next unique
DGZ in the list. If all unique DGZs have been examined and the sortie is
still incomplete, FMABAB goes back to the beginning of the loop and
starts over.

Source File:

ALMOVR2B.FOR

FMABAB

Example:

i ATTACK DIRECTION

RV NUMBER = 1

3 DGZs 3 2
6RVs/MISSILE 3

2 RVs/DGZ / 4
1 MISSILE / 6 5

6

\5w 2

4..

FMABBA

SUBROUTINE FMABBA

Purpose: To form a sortie that moves uprange, turns around, and then
moves downrange.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ2
SQUEEZ

Calling Modules:

CHKMLT

Common Blocks Used:

Block $INCLUDE

SORTIE CBSORTIE.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

FMABBA

Description:

Subroutine FMABBA calls subroutine SQUEEZ to form a list of unique
DGZ numbers, a list of the number of times each DGZ appears in the
sortie, and a list of the starting layer number for each DGZ. Then
FMABBA prepares the index used to form a new sortie: the index is set
to one.

FMABBA prepares to move uprange by setting the flag UPRNGE to
.TRUE., the starting DGZ index to 1, the ending DGZ index to the number
of unique DGZs, and the loop increment to + 1.

FMABBA begins a loop that ranges (forward or backward) over the
list of unique DGZs. During each pass, FMABBA sees if the number of
times the DGZ appears in the sortie is greater than zero. If so, the DGZ is
added to the sortie by calling subroutine ADDGZ2, and the sortie index
is incremented. The number of times the DGZ appears in the input sortie
is decremented. If the sortie is completed during a pass through the
loop, control is returned to CHKMLT. Otherwise, FMABBA proceeds to
the next unique DGZ in the list. If all unique DGZs have been examined
and the sortie is still incomplete, FMABBA reverses the direction in which
it scans the list of unique DGZs, goes back to the beginning of the loop,
and starts over.

Source File:

ALMOVR2B.FOR

FMABBA

Example:

j ATTACK DIRECTION

RVNUMBER = 1
3 DGZs o 3 2

6 RVs/MISSILE 3
2 RVs/DGZ 4.54
1 MISSILE 4 5

2 6

6A- 2

FNFRTH

SUBROUTINE FNFRTH (YMEAN, ISFUR)

Purpose: To find the DGZ in the current sortie that's furthest from the
sortie's vertical midline.

Input Arguments:

Variable Type Description

YMEAN REAL*4 Mean of the sortie's leftmost and rightmost

DGZs.

Output Arguments:

Variable Type Description

ISFUR INTEGER*2 Index of furthest point.

Modules Called:

None

Calling Modules:

MULSRT

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

FNFRTH

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine FNFRTH sets the furthest distance found so far to an
absurdly small value. Then FNFRTH executes a loop that computes the
absolute value of the difference between each DGZ's Y-coordinate and
the mean Y-coordinate. If the value is greater than the current
maximum, the maximum is updated, and the DGZ's index is stored in
ISFUR. After all DGZs have been checked, control returns to MULSRT.

Source File:

ALMOVR2B.FOR

FNHIGH

SUBROUTINE FNHIGH (HIGEST)

Purpose: To find the highest layer number among all RVs attacking the
target island.

Input Arguments:

None

Output Arguments:

Variable Type Description

HIGEST INTEGER*2 Highest layer number.

Modules Called:

None

Calling Modules:

ADJST1

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
WEAPON CBWEAPON.FOR

File Input/Output:

None

FNHIGH

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine FNHIGH sets the highest layer found so far to an absurdly
small value. Then FNHIGH executes an outer loop that examines each
missile used and an inner loop that examines the layer number for each
RV on the missile. If the layer number is higher than the highest layer
number found so far, the highest layer number is updated. After all RVs
have been checked, control returns to ADJST1.

Source File:

ALMOVR2B.FOR

FNPREV

SUBROUTINE FNPREV (IDGZ, IPL, JR, JM)

Purpose: To find the RV in the previous layer that hit a specified DGZ,

and return its missile number and order in the missile.

Input Arguments:

Variable Type Description

IDGZ INTEGER*2 DGZ's index.
IPL INTEGER*2 Previous layer number.

Output Arguments:

Variable Type Description

JR INTEGER*2 RV index; i.e., order within missile.
JM INTEGER*2 Missile index.

Modules Called:

ABRTRN
SQUEE2
WRSFMS

Calling Modules:

ADJST1

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
OUTPUT CBOUTPUT.FOR
WEAPON CBWEAPON.FOR

FNPREV

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine FNPREV executes an outer loop that examines each missile
used and an inner loop that examines each RV on the missile. If the DGZ
attacked by the RV is the one specified by IDGZ, and if the RV's layer
number equals IPL, then control returns to ADJST1. Otherwise the
search continues. If the RV can't be found, this is considered a fatal
error. FNPREV writes a warning message in the status file, and two
information messages indicating the DGZ and previous layer number.
Then it calls ABRTRN.

Source File:

ALMOVR2B.FOR

FNVRTS

SUBROUTINE FNVRTS

Purpose: To determine which DGZs are the vertices of a convex
polygon enclosing the target island.

Input Arguments:

None

Output Arguments:

None

Modules Called:

FCVPOL
PRPNTS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE

TI CBTI.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses " * " typing for variables.
2. Uses $INCLUDE, SPAGE, and $SUBTITLE metacommands.

FNVRTS

Description:

Subroutine FNVRTS executes a loop that sets a logical flag associated
with each DGZ to .FALSE.; these flags indicate none of the DGZs is a
vertex. FNVRTS checks the number of DGZs in the target island. If
there's only one, its flag is set to .TRUE., indicating it's the (only) vertex,
and control returns to ASR2TI. Otherwise, FNVRTS calls PRPNTS to
project the DGZs onto a plane tangent to the earth at the target island's
centroid. Then FNVRTS calls FCVPOL to form a list of DGZ indices. Each
DGZ in this list is a vertex of the convex polygon enclosing the set of
DGZs. Finally, FNVRTS executes a loop that examines each DGZ index in
the list and sets the corresponding DGZ's flag to .TRUE., indicating the
DGZ is a vertex.

Source Fi:e:

ALMOVR2B.FOR

FXLYRS

SUBROUTINE FXLYRS

Purpose: To fix the layer numbers for each string of RVs attacking the
same DGZ. Layer numbers were assigned to RVs with no
regard whatsoever for flight times, so it's possible for one RV
assigned to a DGZ to have an EARLIER downtime than an RV
in a previous layer. FXLYRS ensures that in each string of RVs,
the downtime for layer N is later than the downtime for layer
N-1. (N = 2, 3, 4,

Input Arguments:

None

Output Arguments:

None

Modules Called:

ORDER

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
TI CBTI.FOR
WEAPON CBWEAPON.FOR

FXLYRS

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine FXLYRS executes a loop that examines each DGZ in turn.
If the number of RVs assigned so far (i.e., number of layers) is greater
than 1, FXLYRS prepares three lists. It does so by executing a pair of
nested loops: the outer loop examines each missile used and the inner
examines each RV on the missile. For each RV attacking the current DGZ,
FXLYRS saves the RV index (order within missile), missile index, and
downtime in the lists. When done, the number of entries in each list
equals the number of layers attacking the DGZ.

Then FXLYRS calls ORDER to form a list of pointers so RV data can be
accessed in ascending order of downtime. FXLYRS executes a loop over
layer numbers that puts the RV indices, missile indices, and downtimes
back in their original arrays, but this time the layer numbers and
downtimes are in ascending order.

Source File:

ALMOVR2C.FOR

GETSRT

SUBROUTINE GETSRT (ID, NRVS)

Purpose: To get DGZs for a strict uprange sortie or simple multi-layer
sortie.

Input Arguments:

Variable Type Description

ID INTEGER*2 Pointer to ordered list of DGZ indices.
NRVS INTEGER*2 Number of RVs on missile that will perform

sortie.

Output Arguments:

Variable Type Description

ID INTEGER*2 Pointer to ordered list of DGZ indices. Input
argument may be changed.

Modules Called:

ABRTRN ADXTRA SQUEE2
ADDGZ1 CTRVS SRTSRT
ADLAYR CTUNIQ WRSFMS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR SORTEE CBSORTIE.FOR
OUTPUT CBOUTPUT.FOR TI CBTI.FOR

GETSRT

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Numbers in parentheses are statement numbers in the source code.

(10) Subroutine GETSRT calls CTRVS to count the number of RVs still
needed by DGZs that aren't outcasts. Counting starts with the DGZ
pointed to by ID and sweeps left. If the number of RVs needed is greater
than half the number of RVs on a missile, GETSRT goes to statement 30
to prepare a sortie index. If not, GETSRT checks to see if counting RVs
started with the rightmost DGZ (ID = 1). If so, GETSRT goes to statement
30 to prepare a sortie index. If not, GETSRT resets ID to 1, and goes back
to statement 10, to count RVs across the entire target island.

(30) GETSRT prepares an index used to store sortie data in several
lists.

(35) GETSRT examines the current DGZ. If it's an outcast or it has
already gotten its full quota of RVs, GETSRT goes to statement 50 to
increment the DGZ pointer. If not, GETSRT calls ADDGZ1 to add the DGZ
to the sortie, and increments the sortie index.

(50) GETSRT increments the DGZ index (i.e., moves left). If the sortie
is complete, GETSRT goes to statement 60 to check the number of
entries in the sortie lists. If not, GETSRT checks the DGZ pointer to see if
it's past the target island's left edge. If not, GETSRT goes back to
statement 35 to examine the new DGZ. Otherwise, GETSRT resets the
DGZ pointer to the rightmost DGZ and calls ADLAYR to add RVs from

GETSRT

subsequent layers, to use up the missile load. If that's not possible,
GETSRT call ADXTRA to add extra RVs to the most valuable DGZs in the
sortie. Then GETSRT goes to statement 65 to sort the lists of sortie data.

(60) If the number of DGZs in the sortie doesn't equal the number of
RVs on the missile, something is terribly wrong. GETSRT calls WRSFMS
and SQUEE2 repeatedly to write a warning message in the Status File,
and calls ABRTRN to abort the run.

(65) GETSRT calls SRTSRT to sort the lists of sortie data, so DGZs are in
uprange order. GETSRT calls CTUNIQ to count the number of unique
DGZs in the sortie and returns control to ASR2T2.

Source File:

ALMOVR2C.FOR

GTBLY2

SUBROUTINE GTBLY2 (IM, TBLYRS)

Purpose: To get the time between layers from a list of sure-safe times
read from the Fratricide Constraints Files.

Input Arguments:

Variable Type Description

IM INTEGER*2 Missile index.

Output Arguments:

Variable Type Description

TBLYRS INTEGER*2 Time between current and next layer,

in seconds.

Modules Called:

None

Calling Modules:

ADJST1

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR TI CBTI.FOR
OPSHNS CBOPSHNS.FOR WEAPON CBWEAPON.FOR
OUTPUT CBOUTPUT.FOR

GTBLY2

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

GTBLY2 executes a simple loop that examines each DGZ in the sortie
performed by the specified missile. GTBLY2 uses the height of burst
index associated with each DGZ to get the largest sure-safe time. This
maximum is returned as the time between layers.

Source File:

ALMOVR2C.FOR

GTBLYR

SUBROUTINE GTBLYR (LAYER, TBLYRS)

Purpose: To get the time between the current layer and the next from

a list supplied in the Control File.

Input Arguments:

Variable Type Description

LAYER INTEGER*2 Current layer number.

Output Arguments:

Variable Type Description

TBLYRS INTEGER*2 Time between current and next layer,
in seconds.

Modules Called:

ABRTRN
SQUEE2
WRSFMS

Calling Modules:

ADJST1
CHKTMS

Common Blocks Used:

Block $INCLUDE

CNTROL CBCNTROL.FOR
OPSHNS CBOPSHNS.FOR
OUTPUT CBOUTPUT.FOR

GTBLYR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

If the layer number is bad, GTBLYR calls WRSFMS and SQUEE2 to write
a warning message in the Status File. Then GTBLYR calls ABRTRN to
abort the run. Otherwise, GTBLYR uses the current layer number as an
index to get the desired time between layers from the list, and then
returns control to ADJST1 or CHKTMS.

Source File:

ALMOVR2C.FOR

MOPUP

SUBROUTINE MOPUP

Purpose: To assign RVs on any remaining missile(s) to DGZs in the

target island.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN MOPUPB
CTUNUS MOPUPC
MOPUPA WRSFMS

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR

File Input/Output:

None

MOPUP

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, SPAGE, and $SUBTITLE metacommands.

Description:

MOPUP calls CTUNUS to count the unused missiles in the launch
complex. If all missiles, have been used, MOPUP returns control to
ASR2T2. If not, MOPUP calls MOPUPA to try to assign RVs to DGZs that
didn't get any RVs at all.

MOPUP calls CTUNUS again to count the unused missiles in the launch
complex. If all missiles, have been used, MOPUP returns control to
ASR2T2.

If not, MOPUP checks to see if any missiles have been used at all, since
the next two MOPUP techniques require at least one previous sortie. If
no missiles have been used at all, MOPUP calls WRSFMS to write a
warning message in the Status File, and then calls ABRTRN to abort the
run.

Otherwise, MOPUP calls MOPUPB to try to assign RVs to sorties with
the greatest number of short-changed DGZs; i.e., DGZs that got fewer
RVs than they were supposed to get (as prescribed in the input RV
Allocation File).

MOPUP calls CTUNUS again to count the unused missiles in the launch
complex. If all missiles, have been used, MOPUP returns control to
ASR2T2. Otherwise, MOPUP calls MOPUPC to assign RVs on unused
missiles to the most valuable sorties, and then returns control to ASR2T2.

Source File:

ALMOVR2C.FOR

MOPUPA

SUBROUTINE MOPUPA

Purpose: To assign RVs on an unused missile to DGZs in the target
island. MOPUPA picks DGZs that didn't get any RVs at all.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ1 SRTSRT
CHKMLT STRSRT
SRTSR3 UNDO

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE Block $INCLUDED

LC CBLC.FOR TI CBTI.FOR
SORTEE CBSORTIE.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

MOPUPA

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOPUPA tries to form a sortie from DGZs that didn't get any RVs at
all (outcasts are ignored as usual). if there aren't any such DGZs,
MOPUPA returns control to MOPUP.

MOPUPA sorts the data in the sortie lists so DGZ values are in
ascending order. Then it cycles through the DGZs (backwards), adding
them to the sortie, until all RVs on the unused missile have been used.
MOPUPA sorts the sortie lists to form an uprange sortie. The first
unused missile is picked and its launch time computed. MOPUPA calls
CHKMLT to see if the missile can perform the sortie. If so, MOPUPA calls
STRSRT to store the sortie data in arrays. If not, MOPUPA calls UNDO to
undo the sortie just found. Then MOPUPA returns control to MOPUP.

Source File:

ALMOVR2C.FOR

MOPUPB

SUBROUTINE MOPUPB

Purpose: To assign RVs on any remaining missile(s) to DGZs in the
target island. MOPUPB repeats the sortie with the greatest
number of short-changed DGZs; i.e., DGZs that got fewer RVs
than they were supposed to get (as prescribed in the input
RV Allocation Fiel).

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ1 STRSRT
CHKSRT UNDO

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE Block $INCLUDED

LC CBLC.FOR TI CBTI.FOR
OPSHNS CBOPSHNS.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

MOPUPB

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOPUPB executes a loop over all missiles that were supposed to be

used, looking for one that hasn't been used yet. If it finds one, it begins

another loop over all missiles used, looking for one whose sortie has the

greatest number of short-changed DGZs. If it can't find one, MOPUPB

returns control to MOPUP. Otherwise, MOPUPB duplicates the sortie

and calls CHKSRT to see if the current unused missile can perform the

sortie. If so, MOPUPB calls STRSRT to store the sortie data in arrays: if

not MOPUPB calls UNDO to undo the sortie just formed. Then MOPUPB

makes another pass through the outer loop, looking for the next unused

missile.

Source File:

ALMOVR2C.FOR

MOPUPC

SUBROUTINE MOPUPC

Purpose: To assign RVs on any remaining missile(s) to DGZs in the
target island. MOPUPC repeats the most valuable sortie; i.e.,
the sortie with the most valuable DGZs.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN STRSRT
ADDGZ1 UNDO
CHKSRT WRSFMS

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR TI CBTI.FOR
OPSHNS CBOPSHNS.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

MOPUPC

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOPUPC first sets a logical flag associated with each missile to
.FALSE., indicating the missile's sortie hasn't been repeated. MOPUPC
also defines the current pass through the sortie to be the first.

MOPUPC executes a loop over all missiles, looking for one that hasn't
been used yet. If it finds one, MOPUPC looks for the most valuable sortie
that hasn't already been repeated during the current pass. If MOPUPC
can't find a sortie to repeat during the first pass, something is very
wrong: MOPUPC calls WRSFMS to write a warning message and calls
ABRTRN to abort the run. Otherwise, MOPUPC duplicates the sortie and
calls CHKSRT to see if the unused missile can perform the sortie. If so,
MOPUPC calls STRSRT to store the sortie data in arrays: if not, MOPUPC
calls UNDO to undo the sortie. After trying to duplicate successively less
valuable sorties for any unused missiles, MOPUPC returns control to
MOPUP.

Source File:

ALMOVR2C.FOR

MOVLFT

SUBROUTINE MOVLFT (ID)

Purpose: To move the DGZ pointer immediately to the left of the
leftmost DGZ in the current sortie.

Input Arguments:

None

Output Arguments:

Variable Type Description

ID INTEGER*2 DGZ pointer.

Modules Called:

ABRTRN SQUEE2
FMIN WRSFMS

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE Block $INCLUDED

LC CBLC.FOR SORTEE CBSORTIE.FOR
OUTPUT CBOUTPUT.FOR TI CBTI.FOR

File Input/Output:

None

MOVLFT

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOVLFT calls FMIN to find the DGZ in the current sortie with the
smallest (i.e., leftmost) Y-coordinate. Then MOVLFT searches the list of
DGZs, in descending order of their Y-coordinates, to find a match. If no
match is found, something is very wrong: MOVLFT calls WRSFMS to
write a warning message in the Status File, and calls ABRTRN to abort
the run. Otherwise, MOVLFT increments the DGZ pointer to move left
one more DGZ. If this wraps around the left edge of the target island,
the pointer is reset to the right edge. Then MOVLFT returns control to
ASR2T2.

Source File:

ALMOVR2C.FOR

MULSRT

SUBROUTINE MULSRT

Purpose: To form a multi-layer sortie from an uprange sortie by
reassigning one DGZ's RVs to other DGZs in the sortie.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ1 FNFRTH
CPCNTR SQUEEZ
CTUNIQ

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR
TI CBTI.FOR

File Input/Output:

None

MULSRT

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MULSRT calls CPCNTR to compute the sortie's mean Y-coordinate,
which establishes the sortie's vertical midline. Then MULSRT calls
FNFRTH to find the DGZ in the sortie that's furthest from the vertical
midline.

MULSRT counts the number of times the furthest DGZ appears in the
sortie; that's the number of RVs that have to be reassigned. Then
MULSRT goes through the lists of sortie data, deleting all values
associated with the furthest DGZ. MULSRT decrements the number of
RVs assigned so far to the furthest DGZ.

MULSRT calls CTUNIQ to count the unique DGZs in the modified sortie
and sets a logical flag associated with each unique DGZ to .FALSE., to
indicate the DGZ hasn't been reassigned an RV from the deleted DGZ.
Then MULSRT executes a loop that reassigns RVS to the DGZs remaining
in the sortie. At first, if there are DGZs that still need RVs, RVs are
reassigned to the LEAST valuable DGZs. Later, if all DGZs have received
their full quota, RVs are reassigned to the MOST valuable DGZs.

Source File:

ALMOVR2C.FOR

ORDDGS

SUBROUTINE ORDDGS

Purpose: To order DGZs; i.e., to form a list of pointers so DGZs can be
accessed from right to left.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ORDER
PRPNTS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
TI CBTI.FOR

File Input/Output:

None

ORDDGS

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

ORDDGS called PRPNTS to project the DGZs onto a plane tangent to
the earth at the target island's centroid. ORDDGS calls ORDER to form
the list of pointers required: by ordering DGZs with their Y-coordinates
in descending order, the DGZs can be accessed from right to left. See
Figure 5-13.

Source File:

ALMOVR2C.FOR

ORDMSS

SUBROUTINE ORDMSS

Purpose: To order missiles; i.e., to form a list of pointers that controls
the order in which they're used. A horizontal strip of missiles
is used for each layer, and strips are used from front to back.
Within a strip, missiles are used from right to left. See
Figure 5-13.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN PRPNTS
ISWAP RMLEAD
ORDER SQUEE2
PLURAL WRSFMS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR TI CBTI.FOR
OUTPUT CBOUTPUT.FOR WEAPON CBWEAPON.FOR

ORDMSS

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Numbers in parentheses refer to statement numbers in the source
code.

ORDMSS calls PRPNTS to project the missile silos onto a plane tangent
to the earth at the launch complex's centroid. See Figure 5-13. ORDMSS
tinkers with signs so Y-coordinates decrease from right to left just like
DGZ Y-coordinates. X-coordinates decrease from front to back.
ORDMSS calls ORDER to form a list of pointers, so silos can be accessed
from front to back. ORDMSS zeros the number of RVs assigned to each
DGZ so far and sets the index for the first missile in the first layer to one.

(20) ORDMSS counts the number of DGZs that need at least one
more RV. The result is the number of RVs needed for the current layer.
If it's less than the number of RVs on a missile, ORDMSS goes to
statement 80 to define the number of missiles and RVs to use in the
current layer.

Otherwise, ORDMSS divides the number of RVs in the current layer by
the number of RVs on a missile, yielding the number of full missile loads
(i.e., missiles) in the current layer. ORDMSS computes the index for the
last missile in the current layer. If that index is greater than the number
of missiles in the launch complex, something is wrong. ORDMSS calls
WRSFMS and SQUEE2 to write a warning message in the Status File, and
then calls ABRTRN to abort the run.

ORDMSS

Otherwise, ORDMSS sorts the pointers for the current layer so missiles
will be used from right to left. Then ORDMSS computes the number of
RVs in the current layer (number of missiles in current layer times
number of RVs per missile). ORDMSS executes a loop over all the DGZs in
the target island, sweeping from right to left, and assigning an RV to
each DGZ that still needs one. If all RVs in the current layer are used up
before examining all DGZs, ORDMSS goes to statement 60 immediately,
rather than continuing to statement 60 after examining all DGZs.

(60) ORDMSS computes the index for the first missile in the next
layer (immediately follows the last missile in the current layer), and goes
back to statement 20 to count DGZs again.

(80) If none of the DGZs need an RV, the total number of missiles
used is simply one less than the index for the first missile of the current
(empty) layer. Otherwise, the total number is the index of the first
missile in the current layer. The total number of RVs used is the product
of the total number of missiles used and the number of RVs per missile.
ORDMSS writes an information message in the Status File stating how
many missiles and RVS will be used. Finally, ORDMSS resets the number
of RVs assigned to each DGZ so far to zero and returns control to ASR2TI.

Source File:

ALMOVR2C.FOR

PREPAR

SUBROUTINE PREPAR

Purpose: To prepare data for the Attack File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN SQUEE2
FMIN SWAP
ISWAP WRSFMVS

Calling Modules:

AIM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

ATTACK CBATTACK.FOR TI CBTI.FOR
IC CBLC.FOR WEAPON CBWEAPON.FOR
OUTPUT CBOUTPUT.FOR

File Input/Output:

None

PREPAR

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

PREPAR copies data for each missile used to a set of one-dimensional

arrays, so data can be sorted in ascending order of launch time. If no
missiles were used, PREPAR calls WRSFMS and SQUEE2 to write a
warning message in the Status File, and then calls ABRTRN to abort the
run. Otherwise, PREPAR calls FMIN, ISWAP, and SWAP to sort the missile
data. PREPAR gets the first and last launch times from the ordered list of
launch times and computes the launch duration.

PREPAR copies data for each RV on each missile used to a set of one-
dimensional arrays, so data can be sorted in ascending order of
downtime. The probability of attrition for each RV is set to zero. If
arrays are somehow empty, PREPAR calls WRSFMS and SQUEE2 to write
a warning message in the Status File, and then calls ABRTRN to abort the
run. Otherwise, PREPARE calls FMIN, ISWAP, and SWAP to sort the RV
data. PREPAR gets the first and last downtimes from the ordered list of
downtimes and computes the laydown duration.

Finally, PREPAR zeros every entry in the array containing probabilities
of fratricide and returns control to ALM.

Source File:

ALMOVER3.FOR

RALLOC

SUBROUTINE RALLOC

Purpose: To read the RV Allocatio;, File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

CPCNTR RMLEAD
ORDNAL TRULEN
PLURAL WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR TI CBTI.FOR
CSTRNG CBCSTRNG.FOR TSTRNG CBTSTRNG.FOR
OUTPUT CBOUTPUT.FOR

File Input/Output:

File Unit No. Description

"case".RVA 4 RV Allocation File

RALLOC

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, SPAGE, and $SUBTITLE metacommands.

Description:

RALLOC reads the RV allocation data and checks for errors. If an error
is serious, RALLOC writes a warning message in the Status File and either
calls ABRTRN to abort the run, or stops immediately. If an error isn't
serious, RALLOC writes a warning message and continues.

After reading the entire file successfully, RALLOC computes the
normalized value of each DGZ in the target island, and the number of
heights of burst used in the attack.

Source File:

ALMOVR1A.FOR

RBOOST

SUBROUTINE RBOOST

Purpose: To read the Booster Data File record corresponding to the
missile system to be used in the laydown.

Input Arguments:

None

Output Arguments:

None

Modules Called:

SQUEE2
TRULEN
WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OUTPUT CBOUTPUT.FOR
CSTRNG CBCSTRNG.FOR TI CBTI.FOR
LC CBLC.FOR TSTRNG CBTSTRNG.FOR
OPSHNS CBOPSHNS.FOR

RBOOST

File Input/Output:

File Unit No. Description

MPS.BST 4 Booster Data File

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RBOOST reads a record in the Booster Data File and checks for errors.
If an error occurs, RBOOST writes a warning message in the Status File

and stops immediately.

After reading the record successfully, RBOOST defines the previous
launch time to be 0.0 minus the time between launches. RBOOST also

divides the number of RVs in the attack by the number of missiles in the
attack and compares the quotient with the number of RVs per weapon.
If the two values aren't equal, RBOOST calls WRSFMS and SQUEE2 to

write a warning message, and then stops.

If the values agree, RBOOST computes the number of RVs at the
launch complex and returns control to ALM.

Source File:

ALMOVR 1A.FOR

RCNTRL

SUBROUTINE RCNTRL

Purpose: To read the Control File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ORDNAL SUM
RMBLKS WRSFFR
RMLEAD WRSFMS
SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OPSHNS CBOPSHNS.FOR
CSTRNG CBCSTRNG.FOR OUTPUT CBOUTPUT.FOR

RCNTRL

File Input/Output:

File Unit No Description

"case".CF4 5 Control File. EXEC/MMI is expected to
redirect the standard input (logical unit 5
or *) so input comes from the Control File
rather than the keyboard.

6 If errors occur before the Status File is
opened, error messages will be displayed
on the screen.

"case".SF4 10 Status File. RCNTRL opens the Status File
by calling WRSFFR, specifying the Status
File should be connected to logical unit
10.

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RCNTRL reads records in the Control File and checks for errors. If
errors occur before the Status File is opened, RCNTRL displays a message
on the screen and stops immediately. If the case name and description
are read successfully from the Control File's first record, the Status File is
opened by calling WRSFFR. Thereafter, if errors occur, RCNTRL writes
warning and error messages in the Status File and stops immediately.

If RCNTRL reads the entire file with no errors, it writes an information
message in the Status File and returns control to ALM. If one or more
errors occurred, RCNTRL writes a warning message in the Status File and
stops.

RCNTRL

Source File:

ALMOVRl1A.FOR

RLAUNC

SUBROUTINE RLAUNC

Purpose: To read the Launch Location File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

CMEAN RMLEAD
COCNTR SQUEE2
ORDNAL TRULEN
PLURAL WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OPSHNS CBOPSHNS.FOR
CSTRNG CBCSTRNG.FOR OUTPUT CBOUTPUT.FOR
LC CBLC.FOR TI CBTI.FOR
LSTRNG CBLSTRNG.FOR

RLAUNC

File Input/Output:

File Unit No. Description

"case".LLF 4 Launch Location File.

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RLAUNC reads records in the Launch Location File and checks for
errors. If RLAUNC reads the entire file with no errors, it computes the
launch complex's centroid and the mean silo elevation (altitude). Then
RLAUNC writes an information message in the Status File and returns
control to ALM. If one or more errors occur, RLAUNC writes a warning
message in the Status File and stops.

Source File:

ALMOVR1B.FOR

RPBVFI

SUBROUTINE RPBVFI

Purpose: To read the PBV Data File record corresponding to the missile
system to be used in the laydown.

Input Arguments:

None

Output Arguments:

None

Modules Called:

SQUEE2
TRULEN
WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OUTPUT CBOUTPUT.FOR
CSTRNG CBCSTRNG.FOR WEAPON CBWEAPON.FOR
OPSHNS CBOPSHNS.FOR

File Input/Output:

File Unit No Description

MPS.PBV 4 PBV Data File

RPBVFI

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RPBVFI reads a record in the PBV Data File and checks for errors. If an
error occurs, RPBVFI writes a warning message in the Status File and
stops immediately.

After reading the record successfully, RPBVFI defines the number of
RVs on each PBV. RPBVFI also defines the number of the RV on each
missile that's the first to arrive (currently it's either the first or the last).
RPBVFI calls WRSFMS to write an information message in the Status File
and returns control to ALM.

Source File:

ALMOVR1B.FOR

RSSAFE

SUBROUTINE RSSAFE

Purpose: To read the sure-safe time from each Fratricide Constraints
File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN TRULEN
ORDNAL WRSFMS
SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OUTPUT CBOUTPUT.FOR

CSTRNG CBCSTRNG.FOR TI CBTI.FOR

OPSHNS CBOPSHNS.FOR WEAPON CBWEAPON.FOR

RSSAFE

File Input/Output:

File Unit No. Description

xxx.FCF 4 Fratricide Constraints File. The string "xxx"
represents the file's name. Up to two such
files can be read by ALM.

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RSSAFE first sets the sure-safe time associated with each height of
burst (HOB) to an absurd value (-1.0). Then RSSAFE begins a loop over
each Fratricide Constraints File. If errors or premature ends-of-file occur,
RSSAFE writes one or more messages in the Status File and calls ABRTRN
to abort the run. Otherwise, RSSAFE reads the HOB and sure-safe time
from each file. RSSAFE searches the list of HOBs read from the RV
Allocation File for an entry that matches (within 1 %) the HOB read from
the current Fratricide Constraints File. If such a match is found, the sure-
safe time is stored in a corresponding list.

After reading all the Fratricide Constraints Files, RSSAFE checks each
sure-safe time. If one of them is -1.0 (the absurd value originally stored
in the list), RSSAFE writes a warning message and calls ABRTRN to abort
the run. Otherwise, RSSAFE writes an information message and returns
control to ALM.

Source File:

ALMOVR1B.FOR

RRVFIL

SUBROUTINE RRVFIL

Purpose: To read the RV Data File record corresponding to the missile
system to be used in the laydown.

!nput Arguments:

None

Output Arguments:

None

Modules Called:

SQUEE2
TRULEN
WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OUTPUT CBOUTPUT.FOR
CSTRNG CBCSTRNG.FOR WEAPON CBWEAPON.FOR
OPSHNS CBOPSHNS.FOR

File Input/Output:

File Unit No. Description

MPS.RV 4 RV Data File

RRVFIL

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.

2. Uses $INCLUDE, SPAGE, and $SUBTITLE metacommands.

Description:

RRVFIL reads a record in the RV Data File and checks for errors. If an
error occurs, RRVFIL writes a warning message in the Status File and
stops immediately.

After reading the record successfully, RRVFIL calls WRSFMS to write
an information message in the Status File. Then RRVFIL gets the yield
from the array of real weapon data and returns control to ALM.

Source File:

ALMOVR1B.FOR

SPLSRT

Example:

ATTACK DIRECTION

ATTACK DIRECTIONFUTE

~LOSERA

/S

VERTICAL MIDLINE

VERTICAL MIDLINE SPLIT SORTIE 2

SPLIT SORTIE 1

SPLSRT

SUBROUTINE SPLSRT

Purpose: To split an uprange sortie into halves. The missile will move
uprange in the half with the greater number of DGZs, then
move to the most uprange or most downrange DGZ in the
other half (depending on which is closer), and then move
either downrange or uprange.

Input Arguments:

None

Output Arguments:

None

Modules Called:

CDSTNC SRTSRT
FEXT SWPSRT

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

SPLSRT

FORTRAN 77 Exceptions:

1. Uses "i" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SPLSRT calls FEXT to find the extreme Y-coordinates in the
current sortie. SPLSRT computes the mean of the extremes to establish a
vertical midline that splits the sortie.

SPLSRT executes a loop over the DGZs in the sortie, counting the DGZs
in the left half, and setting flags corresponding to each DGZ. If a DGZ is
in the left half, the flag is .TRUE.; if it's in the right half, the flag is
.FALSE.. SPLSRT rearranges the contents of the sortie data lists. The first
part of the lists describes the DGZs in the denser half of the sortie and
the second part of the lists describes DGZs in the sparser half.

SPLSRT calls SRTSRT to sort the data in each part of the lists so DGZs
are in uprange order. Next, SPLSRT computes the distance from the DGZ
at the end of part one to the DGZ at the beginning of part two, and to
the DGZ at the end of part two. If the DGZ at the end of part two is
closer, SPLSRT reverses the order of the data in part two, so that half of
the sortie is a downrange sortie. Then SPLSRT returns control to ASR2T2.

Source File:

ALMOVR2D.FOR

SQUEE2

SUBROUTINE SQUEE2 (MSGTVP, SUBROU)

Purpose: To squeeze multiple blanks from the message buffer and
then write a Status File message.

Input Arguments:

Variable Type Description

MSGTYP INTEGER*2 Message type indicator: 0 =
Information, 1 = Warning, 2 =

Success, 3 = Error, 4 =

Continuation
SUBROU CHARACTER*(*) Name of the subroutine generating

the message

Output Arguments:

None

Modules Called:

SQBLKS
WRSFMS

Calling Modules:

ADDGZ1 FNPREV RALLOC RSSAFE
ADDGZ2 GETSRT RBOOST TRYFLY
ADJST1 GTBLYR RCNTRL WSORTI
ADLAYR MOVLFT RLAUNCH
ADXTRA ORDMSS RPBVFI
CSTOUT PREPAR RRVFIL

SQUEE2

Common Blocks Used:

Block $INCLUDE

OUTPUT CBOUTPUT.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SQUEE2 calls SQBLKS to squeeze multiple blanks from the
message; i.e. each sequence of two or more blanks is reduced to a single
blank. If the result is at lea.t one character long, SQUEE2 calls WRSFMS
to write the message in the Status File.

Source File:

ALMROOT.FOR

SQUEE3

SUBROUTINE SQUEE3

Purpose: To squeeze multiple blanks from the message buffer and
then display the message on the screen.

Input Arguments:

None

Output Arguments:

None

Modules Called:

SQBLKS

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

OUTPUT CBOUTPUT.FOR

File Input/Output:

File Unit No. Description

CON The screen (CONsole) can be accessed using an
asterisk for the logical unit number.

SQUEE3

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SQUEE3 calls SQBLKS to squeeze multiple blanks from the
message; i.e., each sequence of two or more blanks is reduced to a single
blank. If the result is at least one character long, SQUEE3 displays the
message on the screen,

Source File:

ALM ROOT.FOR

SQUEEZ

SUBROUTINE SQUEEZ

Purpose: To form lists of unique DGZs, starting layer numbers, and the
number of times each DGZ appears in the current sortie; i.e.,
to squeeze out duplicate DGZs from a list of DGZs.

Input Arguments:

None

Output Arguments:

None

Modules Called:

SRTSRT

Calling Modules:

FMABAB
FMABBA
MULSRT

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

SQUEEZ

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SQUEEZ calls SRTSRT to sort the lists of sortie data, so
DGZs are in uprange order. Then SQUEEZ sets indices for storing data in
the squeezed lists, and for examining data in the original lists, to one.

(10) SQUEEZ stores the current DGZ number, in the original lists, in
the list of unique DGZs. SQUEEZ stores the DGZ's layer number
as the DGZ's starting layer. SQUEEZ prepares to examine
subsequent DGZs in the original list, and defines the number of
times the current DGZ appears to be one.

(15) SQUEEZ checks to see if all subsequent DGZs in the original list
have been checked. If so, SQUEEZ goes to statement 20 to
prepare to find another unique DGZ. If not, SQUEEZ compares
the two DGZs to see if they're identical. If so, the number of

times the DGZ appears in the sortie is incremented, the pointer
to the next DGZ is incremented, and SQUEEZ goes back to
statement 15 to check the new DGZ.

(20) SQUEEZ prepares to store data for the next unique DGZ in the
lists, and increments the first index used to examine DGZs in the

original sortie. If there's another DGZ to examine, SQUEEZ goes

back to statement 10.

Otherwise, SQUEEZ defines the number of unique DGZs and returns
control to the calling module.

Source File:

ALMOVR2D.FOR

SRTSR2

SUBROUTINE SRTSR2 (ISTART, ISTOP, LIST)

Purpose: To sort a section of the sortie lists, so integers in one of the
lists are in ascending order.

Input Arguments:

Variable Type Description

ISTART INTEGER*2 Starting index for lists.
ISTOP INTEGER*2 Stopping index for lists.
LIST INTEGER*2 Array: list of integer sortie data.

Output Arguments:

None

Modules Called:

IFMIN
SWPSRT

Calling Modules:

SRTSRT

Common Blocks Used:

None

File Input/Output:

None

SRTSR2

FORTRAN 77 Exceptions:

1. Uses "i" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SRTSR2 executes a loop over the sets of data specified by
the starting and stopping indices. During each pass, SRTSR2 calls IFMIN
to find the smallest integer in the subset of the specified integer list. To
sort the data, SRTSR2 calls SWPSRT whenever two sets of sortie data
should be swapped.

Source File:

ALMOVR2D.FOR

SRTSR3

SUBROUTINE SRTSR3 (LAST)

Purpose: To sort the sortie lists so DGZ values are in ascending order.

Input Arguments:

Variable Type Description

LAST INTEGER*2 Index for last DGZ in current sortie.

Output Arguments:

None

Modules Called:

SWPSRT

Calling Modules:

ADXTRA
MOPUPA

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR
TI CBTI.FOR

File Input/Output:

None

SRTSR3

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SRTSR3 executes a loop over the number of DGZs
specified by LAST. During each pass, SRTSR3 finds the DGZ with the
highest value in the current subset of the sortie data. To sort the data,
SRTSR3 calls SWPSRT whenever two sets of sortie data should be
swapped.

Source File:

ALMOVR2D.FOR

SRTSRT

SUBROUTINE SRTSRT (ISTART, ISTOP)

Purpose: To sort a section of the sortie lists, so X-coordinates are in

descending order; i.e., so DGZs are in uprange order. If the

same DGZ appears more than once, sort layer numbers so
they're in ascending order.

Input Arguments:

Variable Type Description

ISTART INTEGER*2 Starting index for lists.
ISTOP INTEGER*2 Stopping index for lists.

Output Arguments:

None

Modules Called:

SRTSR2
UPRSRT

Calling Modules:

CHKMLT
GETSRT
MOPUPA

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

SRTSRT

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SRTSRT calls UPRSRT to sort the specified subset of the
sortie data, so X-coordinates are in descending order. Then SRTSRT
ensures that identical DGZs are contiguous in the lists. (Two different
DGZs could both appear in the lists more than once, and could have the
same X-coordinate. Data for the two DGZs might alternate in the lists.)

SRTSRT then calls SRTSR2 for each subset of data corresponding to a
single DGZ, to ensure layer numbers for the DGZ are in ascending order.

DGZs are in uprange order.

Source File:

ALMOVR2D.FOR

STRSRT

SUBROUTINE STRSRT (JM, BTNEW, PNEW, TOFNEW)

Purpose: To store successful sortie data in arrays corresponding to a
specified missile; to indicate missile has been used; and to
update burntime, pitch, and time-of-flight.

Input Arguments:

Variable Type Description

JM INTEGER*2 Missile index.
BTNEW REAL*4 New burntime (seconds).
PNEW REAL*4 New booster pitch (degrees).
TOFNEW REAL*4 New time-of-flight (seconds).

Output Arguments:

None

Modules Called:

None

Calling Modules:

ASR2T2 MOPUPB
MOPUPA MOPUPC

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
SORTEE CBSORTIE.FOR

STRSRT

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine STRSRT executes a loop over all DGZs in the sortie, storing
the DGZ index,the downtime, and the layer number in array elements
corresponding to the RVs on the specified missile. STRSRT sets a logical
flag associated with the missile to .TRUE., indicating the missile has been

used. STRSRT copies the new flight parameters to variables specifying
the previous flight parameters. Then control returns to the calling
module.

Source File:

ALMOVR2D.FOR

SWPSRT

SUBROUTINE SWPSRT (IA, IB)

Purpose: To swap two sets of data in the sortie lists.

Input Arguments:

Variable Type Description

IA INTEGER*2 Index for first set to swap.
IB INTEGER*2 Index for second set to swap.

Output Arguments:

None

Modules Called:

ISWAP
SWAP

Calling Modules:

CROSRT SRTSR2
DWNSRT SRTSR3
SPLSRT UPRSRT

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

SWPSRT

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SWPSRT calls ISWAP to swap integer values and SWAP to
swap real values.

Source File:

ALMOVR2D.FOR

SYNEZY

SUBROUTINE SYNEZY (NRVS, LATEST)

Purpose: To synchronize downtimes for RVs in the first layer that are
the first to arrive from their respective missiles. Because the
time between launches is known to be zero, the downtimes
can be truly synchronized.

Input Arguments:

Variable Type Description

NRVS INTEGER*2 The number of RVs on each missile.
LATEST REAL*4 The latest downtime among all the RVs in

the first layer that are the first to arrive
from their respective missile.

Output Arguments:

None

Modules Called:

ADJST4

Calling Modules:

SYNTIM

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
WEAPON CBWEAPON.FOR

SYNEZY

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SYNEZY executes a loop over all missiles used, looking for
missiles whose first RV to arrive is in the first layer. For each such missile,
SYNEZY subtracts the downtime of the first RV to arrive from the latest
downtime supplied as an input argument. If the difference is greater
than zero, SYNEZY calls ADJST4 to adjust the launch time and the
downtime for every RV on the missile (times are adjusted by adding the
difference just computed to the launch time and to every downtime).

Source File:

ALMOVR2D.FOR

SYNTIM

SUBROUTINE SYNTIM

Purpose: To "synchronize" downtimes for RVs in the first layer that
are the first to arrive from their respective missiles. If the
time between launches is greater than zero, true
synchronization is impossible. The most one can hope for is
to minimize the span of downtimes.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADJST5
SYNEZY

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
TI CBTI.FOR
WEAPON CBWEAPON.FOR

File Input/Output:

Ncne

SYNTIM

FORTRAN 77 Exceptions:

1. Uses "i" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

If the time between launches is zero, subroutine SYNTIM executes a
loop over all missiles used, looking for missiles whose first RV to arrive is
in the first layer. SYNTIM finds the latest downtime among those RVs.
Then SYNTIM calls SYNEZY to synchronize the downtimes for those RVs.

If the time between launches is greater than zero, SYNTIM calls
ADJST5 to minimize the span of downtimes for first-layer RVs.

Source File:

ALMOVR2D.FOR

TRYFLY

SUBROUTINE TRYFLY (POSSBL)

Purpose: To fly a missile from the silo closest to the target island, and
to determine if it can drop all its RVs on the DGZ furthest
from the launch complex.

Input Arguments:

None

Output Arguments:

Variable Type Description

POSSBL LOGICAL*1 Flag: If .TRUE., it's possible to fly
the missile and deploy RVs
successfully.

Modules Called:

CHKSRT PRPNTS
FMAX SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR SORTEE CBSORTIE.FOR
OPSHNS CBOPSHNS.FOR TI CBTI.FOR
OUTPUT CBOUTPUT.FOR WEAPON CBWEAPON.FOR

TRYFLY

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

TRYFLY calls PRPNTS to project all DGZs onto a plane tangent to the
earth at the target island's centroid. The negative X-axis points up-
range to the launch complex and the positive X-axis, downrange.
TRYFLY calls FMAX to find the DGZ furthest from the launch complex;
i.e., the DGZ with the maximum X-coordinate.

TRYFLY calls PRPNTS again to project all missile silos onto the same

tangent plane. TRYFLY calls FMAX again to find the silo with the
maximum X-coordinate; i.e., the silo closest to the target island. TRYFLY
forms a sortie consisting of the DGZ furthest from the launch complex,
repeated until there are as many DGZs in the sortie as there are RVs on
the missile.

TRYFLY calls CHKSRT to see if the missile can do the sortie. If so,
TRYFLY returns control to ALM with POSSBL set to .TRUE.; if not, TRYFLY
returns with POSSBL set to .FALSE..

Source File:

ALMOVR1B.FOR

UNDO

SUBROUTINE UNDO

Purpose: To undo a failed sortie; i.e., to restore values to what they
were before the sortie was formed.

Input Arguments:

None

Output Arguments:

None

Modules Called:

None

Calling Modules:

ASR2T2 MOPUPB
MOPUPA MOPUPC

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR TI CBTI.FOR
SORTEE CBSORTIE.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

UNDO

FORTRAN 77 Exceptions:

1. Uses "'" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

UNDO restores the former value of "previous launch time" by
subtracting time between launches from its current value. UNDO
executes a loop over the DGZs in the current sortie, decrementing the
number of RVs assigned so far to each DGZ. Then UNDO returns control
to the calling module.

Source File:

ALMOVR2D.FOR

UPRSRT

SUBROUTINE UPRSRT (FIRST, LAST)

Purpose: To sort data in a subset of the sortie lists, so DGZs are in up-
range order.

Input Arguments:

Variable Type Description

FIRST INTEGER*2 Index for first entry in lists.
LAST INTEGER*2 Index for last entry in lists.

Output Arguments:

None

Modules Called:

FMAX
SWPSRT

Calling Modules:

ASR2T2
SRTSRT

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

UPRSRT

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

UPRSRT executes a -loop over the range of entries specified by FIRST
and LAST, performing a bubble sort on X-coordinates. UPRSRT calls
FMAX to find the maximum X-coordinate, and calls SWPSRT to swap sets
of sortie data. The result is shown in the example below.

Source File:

ALMOVR2D.FOR

Example:

I ATTACK DIRECTION

UPRANGE SORTIE

WSORTI

SUBROUTINE WSORTI

Purpose: To write the Sortie File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OUTPUT CBOUTPUT.FOR
CSTRNG CBCSTRNG.FOR TI CBTI.FOR
LC CBLC.FOR TSTRNG CBTSTRNG.FOR
LSTRNG CBLSTRNG.FOR WEAPON CBWEAPON.FOR
OPSHNS CBOPSHNS.FOR

File Input/Output:

File Unit No. Description

"case" .SF 4 Sortie File

WSORTI

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

WSORTI opens the Sortie File, writes records according to the IOPT in

Section 4, and then closes the file. If errors occur, WSORTI writes a
warning message in the Status File and stops.

Source File:

ALMOVER3.FOR

APPENDIX D

COMMON BLOCK LIST

This appendix lists all common Note that Microsoft FORTRAN

blocks that are unique to the ALM CSC forbids mixing character variables with

and provides a brief description of the other kinds of variables in the same

type of data contained in each. The user common block. Consequently, several
is referred to Reference 2 for a pairs of common blocks are used. Both

description of the common blocks used members of a pair might contain data

exclusively in the TARGET CSC read from the same input file, for
modules that are employed by ALM to example, but one contains character

assess sortie feasibility, data only, while the other contains

integer, real, and logical data.

ALM COMMON BLOCK LIST

ATTAKK Variables that describe the attack; e.g. the DGZ attacked by each

RV. NOTE: The block's name is deliberately spelled ATTAKK

because subroutines shared by the ALM and TARGET CSCs use

another block spelled A'TTrACK.

CNTROL Integers read from the Control File and auxiliary values associated

with them; e.g. number of Fratricide Constraints Files to use, and

the length of each input file's name.

CSTRNG Character strings read from the Control File; e.g. the Attack File's

name.

LC Launch complex data; e.g. silo latitudes and longitudes.

LSTRNG A character string containing the launch complex's name.

OPSHNS Options read from the Control File; the flag indicating whether or

not to minimize the span of RV downtimes.

OUTPUT A buffer used to write Status File messages, and an integer

specifying the message length. Note that a character variable is
combined with an integer variable in this common block. Since the

character variable comes last, the combination is acceptable.

SORTEE Variables describing the current sortie; e.g. the downtimes for each
RV in the sortie. The block's name is deliberately spelled SORTEE

because the TARGET library contains a subroutine named SORTIE.

TI Variables describing the target island; e.g. latitudes and longitudes

for each DGZ.

TSTRNG A character string containing the target island's label.

WEAPON Variables describing the weapon (missile) us-d to attack the target
island; e.g. the yield in kilotons.

APPENDIX E

COMMON BLOCK CROSS REFERENCE

This Appendix provides a common as column headings across the top of the

block cross reference that shows the figure: module names run down the left

common blocks used by each module, and side. Module names marked with an

the modules that use each common asterisk are in the MPS Utilities

block. COMMON block names are used Library; see Reference 3.

COMMON BLOCK

ATTA CN tCMTROL ICSTRNG LC ILSTRNG iOPSMNS OU; ' .T SR'iE T S, ;%

IABRTRn ,..

.t .. .l••"S.............

,, TZA
.T..... ...

£.ZjST5 ttttttet
. ..

A,2.LAYR 1
&ZXTRA

....

ASR2T2 I* S..... "*5"..

:MKMLT
tt t tt

:4KSRT

'HKTMS
.*....

1KWST
......

C4EAN
CPCNTR
"ROSRT

:STOUT
.......*

CTRVS

:TUNUS
:WNSRT
FCVPOL
FEXT
FKABAS

CMABBA
FMAX

I NFRTH
......

NMHIGH
NORM *
F N P R E V

, .t. , • *

'~FNVRTS

FXLYRS ***5.

GETSRT s,5,** - * *'t*

;TBLY2 ***

GTOLYR
.*.*.. *

,SWAP
NOPUP **5

"WOPUPA 5** ... 55*

NOPUPB ***5 ****** -** ** .***.*

UCVLFT
......

MtJLSRT
OR DDGS

...
t

ORDER
ORDMSS

.
*..''

.

YRDNAL
PLURAL
PREPAR

........

PRPNTS
RALLOC * 55*

RBOOST **Wt5* 5*5*0t tt t tt*t*

* 5NTRL** ** *** **0**t

RMGLKS
OMIEA *

I
RRVFIL

.......* **' ''' ...

RSSAFE
.....

SPLSRT
SQGLKS *

SOUEEZ
SOUEE3SQUEEZ

......

SRTSR
SRTSR3 *

COMMON BLOCK CROSS REFERENCE

COMMON BLOCK

jATTAKK ;CNTROL 'CSTRNG ILC LSTRNG CPSHNS OTLPuT S: ':E p3':.. E

SRTSRT '.....
STRSRT

SU
. SWAP

SWPSRT ...

SYNEZY I
SYNTIM
TRULEW
TRYFLY t *tttl* l **l *it**t it ll*
UNDOT.

uPRSRT
WATTCK •
WRSFFR
WRSFHS"
WSOITI T *It**t tit. o**.,. j

COMMON BLOCK CROSS REFERENCE

APPENDIX F
COMMON BLOCK DEFINITIONS

Appendix F identifies and describes in dimensioning common arrays are

all common blocks used in the ALM CSC. cross referenced to the document where
Every common variable is identified and they are defined.

defined. Additionally, parameters used

ATI'AKK COMMON

COMMON block /ATTAKK/ is defined in the FORTRAN source fi,-

CBATTACK.FOR. The block's name is deliberately misspelled because the TARGET

library contains a block named ATTACK. The file is inserted in any module

requiring attack data using the $INCLUDE metacommand. The file's contents are as

follows:

INTEGER*2 DGZ4R2, DGZTY2, HOBIN2, MSL4RV, MSLIND, ORDINM

REAL*4 DGZLA2, DGZLO2, DWNTI2, EARDT, EARLT, LATDT,

1 LATLT, LDURAT, LYDRAT, MISLA2, MISLO2, PATPRI,

2 PFRATR, TLNCH2

COMMON /ATTAKK/DGZ4R2(MRVST), DGZLA2(MRVST), DGZLO2(MRVST),

1 DGZTY2(MRVST), DWNTI2(MRVST), EARDT, EARLT,

2 HOBIN2(MRVST), LATDT, LATLT, LDURAT, LYDRAT,

3 MISLA2(MMSLS), MISLO2(MMSLS), MSL4RV(MRVST),

4 MSLIND(MMSLS), ORDINM(MRVST), PAITRI(MRVST),

5 PFRATR(MPROBS), TLNCH2(MMSLS)

Variable Type Definition

DGZ4R2(I) INTEGER*2 Array: DGZ index for I-th RV to arrive at

target island

DGZLA2(I) REAL*4 Array: latitude for I-th RV's DGZ

(degrees North)

DGZLO2(I) REAL*4 Array: longitude for I-th RV's DGZ

(degrees East)

DGZTY2(I) INTEGER*2 Array: type of DGZ attacked by I-th RV

DWNTI2(I) REAL*4 Array: downtime for I-th RV (seconds)

EARDT REAL*4 Earliest downtime (seconds)

EARLT REAL*4 Earliest launch time (seconds)

HOBIN2(I) INTEGER*2 Array: height of burst index for I-th RV
LATDT REAL*4 Latest downtime (seconds)
LATLT REAL*4 Latest launch time (seconds)
LDURAT REAL*4 Launch time duration (seconds)
LYDRAT REAL*4 Laydown duration (seconds)

MISLA2(1) REAL*4 Array: I-th missile silo's latitude
(degrees North)

MISLO2(I) REAL*4 Array: I-th missile silo's longitude

(degrees East)

MSL4RV(I) INTEGER*2 Array: I-th RV's missile
MSLIND(I) INTEGER*2 Array: I-th missile silo's index
ORDINM(I) INTEGER*2 Array: I-th RV's order in missile
PATTRI(I) REAL*4 Array: probability of attrition for I-th RV
PFRATR(K) REAL*4 Array: probability of fratricide for J-th

RV (J = 2, 3, 4); i.e. probability that I-
th RV (I = 1, 2, 3,...,J-1) destroys J-th

RV.

K = J*(J-3)/2+ I + 1
TLNCH2(1) REAL*4 Array: I-th missile's launch time

(seconds)

Parameter Where Defined Where Documented

MMSLS MAXIMA.FIF Reference 1
MIPROBS MAXIMA.FIF Reference 1
MRVST MAXIMA.FIF Reference 1

CNTROL COMMON

COMMON block /CNTROL/ is defined in the FORTRAN source file
CBCNTROL.FOR. The file is inserted in any module requiring control data using the
$INCLUDE metacommand. The file's contents are as follows:

INTEGER*2 LATKFI, LBOOFI, LCSDES, LCSNAM, LFCPAT

INTEGER*2 LLNLFI, LMSLNA, LPBVFI, LRVAFI, LRVFIL, LSORFI
INTEGER*2 NFCFLS, NMODLS, RNBOOF, RNPBVF, RNRVFI

COMMON /CNTROL/ LATKFI, LBOOFI, LCSDES, LCSNAM, LFCPAT,
1 LLNLFI, LMSLNA, LPBVFI, LRVAFI, LRVFIL, LSORFI,

2 NFCFLS, RNBOOF, RNPBVF, RNRVFI

EQUIVALENCE (NFCFLS, NMODLS)

Variable Type Definition

LATKFI INTEGER*2 Length of attack file's name (includes

path)

LBOOFI INTEGER*2 Length of booster file's name (includes

path)
LCSDES INTEGER*2 Length of case descriptor

LCSNAM INTEGER*2 Length of case name

LFCPAT INTEGER*2 Length of path for fratricide constraint

files

LLNLFI INTEGER*2 Length of launch location file's name
LMSLNA INTEGER*2 Length of missile name

LPBVFI INTEGER*2 Length of PBV file's name
LRVFIL INTEGER*2 Length of RV file's name

LRVAFI INTEGER*2 Length of RV allocation file's name
LSORFI I-TEGER*2 Length of sortie file's name

NFCFLS INTEGER*2 Number of fratricide constraints files to

use

RNBOOF INTEGER*2 Record number for booster file

RNPBVF INTEGER*2 Record number for PBV file

RNRVFI INTEGER*2 Record number for RV file

CSTRNG COMMON

COMMON block /CSTRNG/ is defined in the FORTRAN source file

CBCSTRNG.FOR. The file is inserted in any moule requiring control data (in the
form of character strings) using the $INCLUDE metacommand. The file's contents

are as follows:

CHARACTER*8 CSNAME
CHARACTER*12 FCNAME
CHARACTER*20 MSLNAM
CHARACTER*40 CSDESC
CHARACTER*60 ATKFIL, BOOFIL, FCPATH, LNLFIL, PBVFIL, RVFILE
CHARACTER*60 RVAFIL, SORFIL

COMMON/CSTRNG/ ATKFIL, BOOFIL, CSDESC, CSNAME, FCNAME(MHOBS)
1 FCPATH, LNLFIL, MSLNAM, PBVFIL, RVFILE,

2 RVAFIL, SORFIL

Variable Type Definition

ATKFIL CHARACTER*60 Attack file's name (includes path)
BOOFIL CHARACTER*60 Booster file's name (includes path)

CSDESC CHARACTER*40 Case description
CSNAME CHARACTER*8 Case name
FCNAME CHARACTER*12 Name of I-th fratricide constraints

file

FCPATH CHARACTER*AO Path for fratricide constraints files

LNLFIL CHARACTER*60 Launch location file's name
(includes path)

MSLNAM CHARACTER*20 Missile name
PBVFIL CHARACTER*60 PBV file's name (includes path)

RVAFIL CHARACTER*60 RV allocation file's name (includes
path)

RVFILE CHARACTER*60 RV file's name (includes path)
SORFIL CHARACTER*60 Sortie file's name (includes path)

Parameter Where Defined Where Documented

MHOBS MAXIMA.FIF Reference 3

LC COMMON

COMMON block 0/L/is defined in the FORTRAN source file CBLC.FOR. The
file is inserted in any module requiring launch complex data using the $INCLUDE
metacoinmand. The file's contents are as follows:

INTEGER*2 DGZ4RV, LAYER, LLCLAB, NMSLLC, NMUSED, NRUSED
INTEGER*2 NRVSLC, NSLLOS, ORMSLS
LOGICAL*1 -COLOCA, USDMSL
REAL*4 BRNTIM, DWNTIM, LCELEV, LCLAT, LCLON
REAJ.*4 MISALT, MISLAT, MISLON, PITCH, PLTIME, TLNCH
REAI*4 TOFLO, XSILO, YSILO

COMMON rtC/ BRNTIM, COLOCA, DGZ4RV(MRVSM,MMSLS)
1 DWNTIM(MRVSM,MMSLS), LAYER(MRVSM,MMSLS),
2 LCELEV, LCLAT, LCLON, LLCLAB,
3 MISALT(MMSLS), MISLAT(MMSLS),
4 M[SLON(MMSLS), NMSLLC, NMUSED, NRUSED, NRVSLC,
5 ORMSLS(MMSLS), PITCH, PLTIIAE, TLNCH(MMSLS),
6 TOFLC, USDMSL(MMSLS), XSILO(MMSLS), YSI-LO(MMSLS)

EQUIVALENCE (NMSLLC, NSILOS)

Variable Type Definition

BRNTIM REAL*4 Initial (default) burntime in seconds
COLOCA LOGICAL*1 Flag: if.TRUE.,nmissiles are co-located;

i.e. have identical coordinates
DGZ4RV(I,J) LNTEGER*2 Array: DGZ for I-th RV on J-th missile
DW~NTIM(I,J) REAL*4 Array: downtime (seconds) for I-th RV on

J-th missile
LAYER(Ij) INTEGER*2 Array: layer number for I-th RV on J-th

missile

LCELEV REAL*4 Launch complex's elevation (altitude) in

feet
LCLAT REAL*4 Launch complex's latitude (in degrees

North)
LCLON REAL*4 Launch complex's longitude (in degrees

East)

LLCLAB INTEGER*2 Length of launch complex label

MiISALT(I) REAL*4 Array: I-th missile's altitude (in feet)
MISLAT(I) REAL*4 Array: I-th missile's latitude (in degrees

North)

MISLON(I) REAL*4 Array: I-th missile's longitude (in
degrees East)

NMSLLC INTEGER*2 Number of missiles (silos) at launch

complex. Read from Launch Location
File.

NMUSED INTEGER*2 Number of missiles used. Computed

during run: NMUSED < = NMSLLC.
NRUSED INTEGER*2 Number of RVs used: product of number

of missiles used (NMUSED) and number

of RVs per weapon (NRVSWP, in
COMMON block /WEAPON/).

NRVSLC INTEGER*2 Number of RVs at launch complex:

product of number of missiles at launch

complex (NMSLLC) and number of RVs
per weapon (NRVSWP, in COMMON
block /WEAPON/).

NSILOS INTEGER*2 Number of silos (missiles) at launch

complex; synonym for NMSLLC
ORMSLS(I) INTEGER*2 Array: Index (subscript, pointer) of I-th

missile to use

PITCH REAL*4 Initial (default) booster pitch angle
(degrees)

PLTIME REAL*4 Previous launch time (seconds)

TLNCH(I) REAL*4 Array: launch time for I-th missile
(seconds)

TOFLC REAL*4 Initial (default) time-of-flight (seconds)

USDMSL(I) LOGICAL*1 Array: flag: if.TRUE., I-th missile was

used
XSILO(I) REAL*4 Array: tangent-plane X-coordinate for

I-th silo
YSILO(I) REAL*4 Array: tangent-plane Y-coordinate for

I-th silo

Parameter Where Defined Where Documented

MMSLS MAXIMA.FIF Reference 3
MRVSM MAXIMA.FIF Reference 3

LSTRNG COMMON

COMMON block /LSTRNG/ is defined in the FORTRAN source file

CBLSTRNG.FOR. The file is inserted in any module requiring the launch complex's

label using the $iNCLUDE metacommand. The file's contents are as follows:

CHARACTER*24 LCLABL

COMMON/LSTRNG/LCLABL

Variable Type Definition

LCLABL CHARACTER*24 Launch complex's label

OPSHNS COMMON

COMMON block /OPSHNS/ is defined in the FORTRAN source file

CBOPSHNS.FOR. The file is inserted in any module requiring Control File options

using the $INCLUDE metacommand. The file's contents are as follows:

LOGICAL*1 SYNCRO
LOGICAL*4 ROTRTH, SPACED

REAL*4 FCFHOB, FRF4RX, GAMMA, SHRSAF, TBLAYR

COMMON /OPSHNS/ FCFHOB(MHOBS), FRF4RX, GAMMA, ROTRTH,
I SHRSAF(MHOBS), SPACED, SYNCRO,

2 TBLAYR(MLAYRS-1)

Variable Type Definition

FCFHOB(I) REAL*4 Array: Height of burst read from I-th
fratricide constraints file; in kilofeet

FRF4RX REAL*4 Maximum fraction of fuel to use for range

extension
GAMMA REAL*4 Reentry angle (degrees) for all RVs; if zero, use

minimum energy reentry angle

ROTRTH LOGICAL*4 Flag: if .TRUE., use rotating earth

SHRSAF(I) REAL*4 Array: sure-safe time read from I-th fratricide
constraints file; in seconds

SPACED LOGICAL*4 Flag: if.TRUE., RVs should be spaced at least
a minimum distance apart at the spacing
reference altitude

SYNCRO LOGICAL* 1 Flag: f .TRUE., downtimes should be
synchronized (or the span of downtimes should

be minimized)
TBLAYR(I) REAL*4 Array: time between I-th and I + 1-th layers

(seconds)

Parameter Where Defined Where Documented

NHOBS MAXIMA.FIF Reference 3
MLAYRS MAXIMA.FIF Reference 3

OUTPUT COMMON

COMMON block /OUTPUT/ is defined in the FORTRAN source file
CBOUTPUT.FOR. The file is inserted in any module requiring an output message

buffer using the $INCLUDE metacommand. The file's contents are as follows:

CHARACTER*48 MESSAG
INTEGER*2 LENGTH

COMMON/OUTPUT/ LENGTH, MESSAG

Variable Type Definition

LENGTH INTEGER*2 Length of message (or other string)

MESSAG CHARACTER*48 Buffer for status file messages

SORTEE COMMON

COMMON block /SORTEE/ is defined in the FORTRAN source file

CBSORTIE.FOR. The block's name is deliberately misspelled because the TARGET
library contains a subroutine named SORTIE. The file is inserted in any module
requiring sortie data using the $INCLUDE metacommand. The file's contents are as
follows:

INTEGER*2 DGZSRT, LYRSRT, NGZSRT, NTIMES, NUNEEK, STRLYR, UNEEK
REAL*4 DT4SRT, LATSRT, LONSRT, XSRT, YSRT

COMMON /SORTEE/ DGZSRT(MRVSM), DT4SRT(MRVSM),
1 LATSRT(MRVSM), LONSRT(MRVSM), LYRSRT(MRVSM),
2 NGZSRT, NTIMES(MRVSM) :UNEEK, STRLYR(MRVSM),

3 UNEEK(MRVSM), XSRT(MRVSM), YSRT(MRVSM)

Variable Type Definition

DGZSRT(I) INTE(lGER*2 Array: DGZ for I-th RV in the sortie
DT4SRT(I) REAL*4 Array: downtime for I-th RV in the sortie
LATSRT(I) REAL*4 Array: latitude for I-th DGZ in the sortie
LONSRT(I) REAL*4 Array: longitude for I-th DGZ in the

sortie
LYRSRT(I) INTEGER*2 Array: layer number for I-th RV in the

sortie

NGZSRT INTEGER*2 Number of DGZs (RVs) in the sortie

NTIMES(I) INTEGER*2 Array: number of times the I-th unique
DGZ appears in the sortie

NUNEEK INTEGER*2 Number of unique DGZs in the sortie

STRLYR(I) INTEGER*2 Array: starting layer number for I-th
unique DGZ in the sortie

UNEEK(I) INTEGER*2 Array: I-th unique DGZ number in ýhe
sortie

XSRT(I) REAL*4 Array: X-coordinate for I-th DGZ in the

sortie
YSRT(I) REAL*4 Array: Y-coordinate for I-th DGZ in the

sortie

Parameter Where Defined Where Documented

MRVSM MAXIMA.FIF Reference 3

TI COMMON

COMMON block fTI is defined in the FORTRAN source file CBTL.FOR. The

file is inserted in any module requiring target island data using the $INCLUDE
metacomniand. The file's contents are as follows:

INTEGER*2 DGZDES, DGZNUM, DGZTYP, HIMAX, HIMIN, HOBIND

INTEGER*2 LTILAB, NGZSTI, NHOBS, NMA'ITI, NRATTI, NRSOFR

INTEGER*2 NRVDGZ, ORDGZS, ORDRVS

LOGICAL*1 OUTOST, VERTEX

REAL*4 DGZLAT, DGZLON, HOB
REAL*4 TIELEV, TI-LAT, TILON

REFAL*4 VALUE, XDGZ, YDGZ

COMMON /T11 DGZLAT(MDGZS), DGZLON(MDGZS), DGZNUM(MDGZS),
1 DGZTYP(MDGZS), HIMAX, HIMIN, HOB(1:MHOBS),

2 HOBIND(MDGZS), LTILAB, NGZSTI, NHOBS, NMATTIT,
3 NRA1TI, NRSOFR(MDGZS), NRVDGZ(MDGZS),

4 ORDGZS(MDGZS), OUTCST(MDGZS), TIELEV, TILAT, TILON,

5 VALIJE(MDGZS), VERTEX(MDGZS),

6 XDGZ(MDGZS), YDGZ(MDGZS)

DIMENSION DGZDES(MDGZS)
EQUIVALENCE (DGZDES, DGZNUM)

Variable Type Definition

DGZLAT(I) REAL*4 Array: latitude of I-th DGZ (degrees
North)

DGZLON(I) REAL*4 Array: longitude of I-th DGZ (degrees
East)

DGZNUM(I) INTEGER*2 Array: four-digit integer identifying I-th

DGZ

HIMAX INTEGER*2 Array: maximum height of burst index

found in RV Allocation file

HIMIN INTEGER*2 Minimum height of burst index found in

RV Allocation file

NGZSTI INTEGER*2 Number of DGZs in target island

NHOBS INTEGER*2 Number of heights of burst in the attack.
Equals number of unique height of burst

indices found in RV Allocation File.

NMATTI INTEGER*2 Number of missiles attacking target

island. Read from RV Allocation File.

Should be less than or equal to number of
missiles in launch complex (NMSLLC, in

COMMON block /LC/. Number of

missiles actually used (NMUSED, in

COMMON block /LC/) may be less than

NMATrI.

NRATTI INTEGER*2 Number of RVs attacking target island.

Read from RV Allocation File. Should be
product of NMATIM and number of RVs

per weapon (NRVSWP, in COMMON

block /WEAPON/).

NRSOFR(I) INTEGER*2 Array: number of RVs assigned, so far, to

I-th DGZ

NRVDGZ(I) INTEGER*2 Array: number of RVs allocated to I-th
DGZ (read from RV Allocation File)

ORDGZS(I) INTEGER*2 Array: index (subscript, pointer) to I-th
DGZ, when sweeping from right to left

OUTCST(I) LOGICAL*1 Array: flag: if .TRUE., I-th DGZ is an
"outcast"; i.e. unreachable

TIELEV REAL*4 Centroid's elevation (altitude) in feet

TILAT REAL*4 Centroid's latitude (degrees North)

TILON REAL*4 Centroid's longitude (degrees East)

VERTEX(I) LOGICAL*I Array: flag: if.TRUE., I-th DGZ is one

vertex of a convex polygon enclosing all

DGZs

XDGZ(I) REAL*4 Array: tangent-plane X-coordinate of I-th

DGZ

YDGZ(I) REAL*4 Array: tangent-plane Y-coordinate of I-th

DGZ

Parameter Where Defined Where Documented

MDGZS MAXIMA.FIF Reference 3

WEAPON COMMON

COMMON block /WEAPON/ is defined in the FORTRAN source file

CBWEA-PON.FOR. The file is inserted in any module requiring weapon data using

the $INCLUDE metacommand. The file's contents are as follows:

INTEGER*2 FIBV, FIPV, FIRV, FRBV, FRPV, FRRV, FRVIN

INTEGER*2 LIBV, LIPV, LIRV, LRBV, LRPV, LRRV

INTEGER*2 MIWVS, MRWVS, NPBVSM, NRVSMS, NRVSPB

INTEGER*2 NRVSWP, NWPUSD

INTEGER*4 IWPDAT

REAL*4 TMBLNC, WPNDAT, YIELD

PARAMETER (FIBV = 1)
PARAMETER (FIRV = FIBV + MIBVS)

PARAMETER (FIPV = FIRV + MIRVVS -1)

PARAMETER IEBV = FIRV- 1)

PARAMETER (LIRV = FIPV- 1)

PARAMETER (LIPV = FIPV + MIPVS- 1)

PARAMETER (FRBV = 1)

PARAMETER (FRRV = FRBV + MRBVS- 3)

PARAMETER (FRPV = FRRV + MRRVVS - (2 + MSHOBS + 4))

PARAMETER (LRBV = FRRV- 1)

PARAMETER (LRRV = FRPV- 1)

PARAMETER (LRPV = FRPV + MRPVS- 1)

PARAMETER (MIWVS - LIPV)

PARAMETER (MRWVS = LRPV)

COMMON :WEAPON/FRVIN, [WPDAT(MIWVS), NPBVSM, NRVSPB, NRVSWP,
1 NWPUSD, TMBLNC, WPNDAT(MRWVS), YIELD

EQUIVALENCE (NRVSMS, NRVSWP)

Variable Type Definition

BRLEN INTEGER*2 Booster record length [20-character booster
name plus 4 times number of 4-byte (integer)

values plus 4 times number cf 4-byte (real)

values]
FIBV INTEGER*2 Index for first integer booster value in

IWPDAT
FIPV INTEGER*2 Index for first integer PBV value in IWPDAT
FIRV INTEGER*2 Index for first integer RV value in IWPDAT
FRBV REAL*4 Index for first real booster value in WPNDAT
FRPV REAL*4 Index for first real PBV value in WPNDAT
FRRV REAL*4 Index for first real RV value in WPNDAT
FRVIN INTEGER*2 First RV in (into a target island) among the

RVs on any given weapon. It's either the first
or the last RV on a missile; it can't be any RV
in between.

1WPDAT INTEGER*4 Array: contains integer weapon data passed to

subroutine CHKSRT
LIJBV INTEGER*2 Index for last integer booster value in

IWPDAT
LIPV INTEGER*2 Index for last integer PBV value in IWPDAT
LIRV INTEGER*2 Index for last integer RV value in IWPDAT
LRBV REAL*4 Index for last real booster value in WPNDAT
LRPV REAL*4 Index for last real PBV value in WPNDAT
LRRV REAL*4 Index for last real RV value in WPNDAT
MIWVS INTEGER*2 Maximum number of integer weapon values in

IWPDAT
MRWVS INTEGER*2 Maximum number of real weapon values in

WPNDAT

NPBVSM INTEGER*2 Number of PBVs per missile

NRVSMS INTEGER*2 Number of RVs per missile (= NRVSWP)

NRVSPB INTEGER*2 Number of RVs per PBV

NRVSWP INTEGER*2 Number of RVs per weapon (NRVSMS)

NWPUSD INTEGER*2 Number of weapons used

PRLEN INTEGER*2 PBV record length [20-character PBV name
plus 4 times number of 4-byte (integer) values

plus 4 times number of 4-byte (real) values]

RRLEN INTEGER*2 RV record length [20-character RV name plus

4 times number of 4-byte (integer) values plus

4 times number of 4-byte (real) values]
TMBLNC REAL*4 Minimum time between launches (seconds)

WPNDAT REAL*4 Array: contains real weapon data for

subroutine CHKSRjI

YIELD REAL*4 Yield in kilotons, read from RV Data File

APPENDIX G
PARAMETER DEFINITIONS

This Appendix identifies and /WEAPON/. See Appendix F, where the
defines all parameters that are unique to parameters as well as the variables in
the ALM CSC. Other parameters used the block are described. In most (but not
by the ALM CSC are defined by the MPS all) modules the CHARACTER*6
Utilities support software and are parameter S is defined to be the module's

described in Reference 3 (see, name; e.g. in RALLOC, the following
MAXIMA.FIF); or are defined in the definition appears:
TARGET CSC Maintenance Manual
(Reference 2) and are needed exclusively PARAMETER (S = 'RALLOC')

by TARGET modules used by the ALM
to assess sortie feasibility. All other parameters used by the

A set of parameters are defined and ALM are defined locally and apply only

used within COMMON block to the module in which they're defined.

APPENDIX H

DATA FLOW DIAGRAM SYMBOLOGY

The Data Flow Diagram (DFD) is a data stores and sources/sinks. Figure H-

graphic presentation of the partitioning 1 depicts a simple DFD. The inputs to

of a system into a network of processes and outputs from a process are shown as

and their data interfaces. The DFD is a data flows. The processes represent the

representation of the transformation of transformation of data. The data stores

data. It identifies processes to be represent a time delayed repository of

performed and the data which flows data. The sources/sinks show,

between processes. The DFD does not respectively, where the data required by

indicate processing sequence or logical the system comes from and where the

decisions. A DFD is composed of four data produced by the system goes.

basic elements: data flows, processes,

0 .1 . f 12.1

! /O•• o . // .I I

1 DATASTORES C -bIPROCESS DI

CONNECTOR
TO OTHER

PROCESS

FIGURE H-1 EXAMPLE DATA FLOW DIAGRAM

APPENDIX I
FUNCTION CHART SYMBOLOGY

The function chart is a graphic handling, editing, system structure,

presentation of the partitioning of a information clustering, initialization,

software system into functions. The termination, fan-in, fan-out and module

function chart illustrates this packaging. In a function chart, modules

partitioning by showing function are represented by a rectangle with an

hierarchy, organization and identifier and descriptive title inside.

communication. It is a major tool used Functions are represented by a simple

in software design. It is derived from the rectangle. Connections between

data flow diagrams developed during modules and functions are represented

systems analysis. The function chart by lines joining them. The connection

portrays the software system in usually means that the module has
manageable and meaningful partitions "called" another to perform a function.

that can be evaluated with quality Figure I-1 depicts a simple function

factors such as coupling and cohesion; chart. Figure 1-2 defines function chart

and other design guidelines such as symbols.

factoring, decision splitting, error

ID-1

MODULE - A

MODULE - B FUNCTION - A FUNCTION - B

FUNCTION - C I/FUNCTION - D FUNCTION - E FUNCTION - F

FIGURE I-1 EXAMPLE FUNCTION CHART

CSC "•"

IDENTIFIER "ODULE

DESCRIPTIVE A CONTIGUOuS SEQUENCE OF PROGRAM STATEMENTS BOUNDED BY BOUNDARY

TITLE ,EEMENTS. HAVING AN AGGRECATE .DENTir!IER THE CSC "N- TAG IS JSE) AS ..

INDEX TO TRACK THE CSC s STR7CT-.RE ACROSS MULTIPLE PAGES

2 MODULE FUNCTION CALL

AN ARROW POINTING TO A MODULE OR FUNCTION DENOTES A REFERENCE TO THE

AGGREGATE IDENTIFIER OF THAT MODULE OR FUNCTION

3 ,TERAT'vE INVOCATION (LOOP)

"r-EMODULE FUNCTION REFERENCE • CALL") IS IMBEDDED IN A LOOPING

PROCEDURE IT MAY ENCLOSE ANY NUMBER OF MODULE, FUNCTION CALLS THE

LOOP CONDITION MAY BE WRiTTEN TO THE SIDE OF THIS SYMBOL

4 SELECTION OR TRANSACTION CENTER (INCLUSIVE "OR-)

MODULE
THE MODULE FUNCTION CALL iS IMBEDDED INA DECISION PROCEDURE IT MAY

ENCLOSE ANY NUMBER OF MODULE,, FUNCTION CALLS

5 EXCLUSIVE "OR" MODULE CALL

MODULE
ONLY ONE SUB-MODULE OR SUB-FUNCTION IS CALLED DEPENDING UPON THE

VARIABLE VALUE

VARIABLE"

6 CONDITIONAL MODULE CALL

MODULE
SUB-MODULE OR SUB-FUNCTON CALLED DEPENDING UPON BRANCHING

CONDITION

CONDITION'

IDENTIFIER 7 PREDEFINED MODULE

DESCRIP- ANY PREDEFINED OR PREEXISTING MODULE

TIVE
TITLE

FIGURE 1-2 FUNCTION CHART SYMBOLS

APPENDIX J
FLOWCHART SYMBOLOGY

The flowchart is a graphic definition and to enhance clarity. Non-
presentation of a software system that standard symbols are used tV denote:
employs symbols and interconnecting 0 Do loop boundaries. There is no
lines to depict processing flow. The recognized standard for identifying

symbols are used to denote processes and the scope of do loops. The symbology
operations, and arrowheads on the used is simple and is in widespread
interconnecting lines show the direction use at Kaman.

of data flow and the sequence of 0 Connector (In). The FIPS recognizes
operations. a single connector. However, greater

clarity is achieved by using different
Figure J-1 defines all symbols used symbols for in, and out, connectors.

in MPS flowcharts. Aside from the 0 Module call. The FIPS module call
minor exceptions noted below, these symbol has been eschewed, in favor of
symbols conform to Federal Information the indicated symbol, for MPS
Processing Standards (FIPS). Three application. The symbol employed
nonstandard flowcharting symbols are allows one to easily identify module
employed in the MPS to provide superior calls based .n symbol shape.

Q i • Module entry or exit Point. A point at which control is
passed to a module (ENTER), or a point at which a
module relinquishes control (RETURN).

I Moduleprocess. Specification of an operation or
group of operations defined within the module.

S Module call. Invocation of a named process
(subroutine) consisting of one or more operations or
steps specified elsewhere.

Decision. A point in a module where several paths are
possible, and the path selected is dependent on the
state of a decision variable or variables.

Connector (Out). A junction in the line of flow used to

indicate passage of control to another part of the
module.

SConnector (In). A junction in the line of flow used to
denote a point where control is assumed.

FIGURE J-1 FLOWCHART SYMBOLS

Disa. I/0 function in which information is displayed
for human use at the time of processing.

Document. I/0 function in which information is output
to a hardcopy device.

Input/Output. The process of reading an input file orz Z writing an output file.

Processing flow.

I I
I I Do loop boundary.
I I
I I

FIGURE i-I FLOWCHART SYMBOLS (Concluded)

